

Status of the

LUX-Zeplin Experiment

Bjoern Penning

The LZ Experiment

- LXe based experiments demonstrated to be most sensitive to WIMP type DM
- Dual phase **TPC with 7 T of LXe** (5.6T fiducial), two signals:
 - Prompt scintillation light (S1)
 - Prop. charge signal amplified in gas (S2)
- Signal ratio allows to discriminate particle
 - Electron scatter tend to produce (relatively) more charge
 - Neutron scatter create (relatively) more light
- Depth (z) from time difference between S1/S2 and light pattern (x, y) allows fiducialization
- LZ will be the the most sensitive DM detector w.r.t to target mass, energy threshold and discrimination power
- The TPC is surrounded by active veto detectors
- **Background free** experiment allows to be sensitive to a wide range of exciting physics

Bjoern Penning

• External sources

- Cosmogenics
- Radiation from rock
- Neutrinos

Internal sources

- Rad. impurities in material
- Rn emanation from components
- Dust on surfaces
- Xe contaminants

U/Th/K/Rn

U

Background Mitigation (External)

- Cosmogenic backgrounds:
 - Go deep! 1 mile underground (4850 feet)
 - \circ Reduces muon flux by 10^7
- Sanford Underground Research Facility (SURF) in former gold mine
 - Also DUNE, CASPAR, SigmaV, ...

Background Mitigation (Internal)

• Detector materials:

- Use purest materials obtainable, screen all
- Target activity: **O(mBq/kg) 1/15,000 Bananas**
- Radon emanation:
 - Four screening sites and two portable assays
 - Reduce Rn from warm components by > x10
 - Target activity: **2 µBq/kg 1/750,000 Bananas**

• Radon daughters and dust on surfaces

- TPC assembly in Rn-reduced cleanroom
- Dust < 500 ng/cm² on all LXe wetted surfaces
- Rn-daughter plate-out on TPC walls
 < 0.5 mBq/m² 1/30,000 Bananas
- Reduce Xenon contaminants to **O(0.015 ppt)**
- Cleaning, cleaning, cleaning!

The Experiment

Bjoern Penning

The LZ Experiment

Bjoern Penning

Bottom PMT array with field cage

Top PMT array

HV grid weaving

The LZ Experiment

LZ Status • EPS 2021

Veto Detectors

Skin:

- 2 T of LXe surrounding the TPC
- Lined with PTFE to maximize light collection efficiency
- Anti-coincidence detector for MeV level γ-rays

Outer Detector:

- 17 tonnes Gd-loaded liquid scintillator in acrylic vessels
- 120 8" PMTs mounted in the water tank
- Anti-coincidence detector for γ-rays and neutrons
- Observe ~8 MeV γ-rays from thermal neutron capture
- 95% eff of neutrons of 200 keV and above

Bjoern Penning

Bjoern Penning

The LZ Experiment

Bjoern Penning

Bjoern Penning

Bjoern Penning

LZ Physics

Bjoern Penning

Standard WIMP Searches

PRD 101, 052002 (2020)

- Non-vetoed single scatters of 1.5-6.5 keV_{ee} (6-30 keV_{nr}) in 5.6 t fiducial volume:
 - 6.18 background counts after 1000 live days

arXiv: 2101.08753

- Lower the energy threshold
 - Reduce S1 coincidence requirement from 3 to 2 (exploiting PMT double photoelectric effect)
 - About 4 x improvement at 2.5 GeV/c²
 - Conduct an S2-only search
 - Greater challenge for background discrimination
 - Employ pulse width
 - Two orders of magnitude improvement
- Sub-GeV masses accessible via Migdal effect

arXiv:2102.11740

- Explore range of novel model accessible via pure electron recoils
- Backgrounds dominated by ²²²Rn and ¹²⁴Xe vvββ
- Studies seven model, amon gothers: Solar axions, axion-like dark matter, neutrino magnetic moment etc
- In all LZ is able to reach world leading sensitivities

Phys. Rev. C 102, 014602 (2020)

- Neutrioless 0vββ only allowed if Neutrino is its own anti-particle (Majorana)
- Nominal 1% energy resolution at ¹³⁶Xe Q_{ββ} value (2458 keV)
- $T_{1/2}$ (90% C.L.) > 1 x 10²⁶ years in 1000 live days in 1 t fiducial volume

- LZ is an multi-purpose observatory capable of exploring a plethora of rare-event phenomena
- World-leading sensitivities due to ultra-low bkgd, bkd discrimination, large target mass and an excellent energy resolution.
- Experiment is in its commissioning phase

Outlook

- Good progress in assembly and integration of detector and associated systems
- Expecting first data later this year
- Expected WIMP sensitivity of 1.4 x 10-48 cm2 at 40 GeV/c2
- Also sensitive to a range of non-WIMP physics
- A new chapter in dark matter physics is just on the horizon!

The LZ Collaboration

34 Institutions: 250 scientists, engineers, and technical staff

https://lz.lbl.gov/

- **Black Hills State University**
- **Brandeis University**
- **Brookhaven National Laboratory**
- **Brown University**
- **Center for Underground Physics**
- **Edinburgh University** .
- Fermi National Accelerator Lab.
- Imperial College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- **Northwestern University**
- **Pennsylvania State University**
- **Royal Holloway University of London**
- **SLAC National Accelerator Lab.**
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- **Texas A&M University**
- **University of Albany, SUNY**
- **University of Alabama**
- **University of Bristol**
- University College London
- **University of California Berkeley**
- **University of California Davis**
- **University of California Santa Barbara**
- **University of Liverpool**
- **University of Maryland**
- **University of Massachusetts, Amherst**
- **University of Michigan**
- University of Oxford
- **University of Rochester**
- **University of Sheffield**
- University of Wisconsin, Madison

Bjoern Penning

Portugal Korea

Thanks to our sponsors and participating institutions!

para a Ciência e a Tecnologia

FCT

h Institute for **Basic Science**

LZ Status • EPS 2021

Office of Science

Backup

Bjoern Penning

Cavern Backgrounds

- Used Nal detector to measure γ-ray flux in different locations in Davis Cavern
- Initial simulations suggested cavern was dominant background in OD, with large uncertainty from γ-ray rate.
- Measurement of ⁴⁰K, ²³⁸U and ²³²Th concentrations in rock
- Used to normalize γ-flux simulation with previously large uncertainties

Bjoern Penning

LZ Status • EPS 2021

LZ Status

NIM A953 (2020)163047

Dual Phase TPC

- Dual phase TPC, two signals
 - Prompt scintillation light (S1)
 - Prop. charge signal amplified in gas (S2)
- Signal ratio allows to discriminate particle
 - Electron scatter tend to produce more charge
 - Neutron scatter create more light
- Depth (z) from time difference between S1/S2 and light pattern (x, y)

Signal Discrimination

Bjoern Penning

LZ Status • EPS 2021

TABLE III. Estimated backgrounds from all significant sources in the LZ 1000 day WIMP search exposure. Counts are for a region of interest relevant to a 40 GeV/c² WIMP: approximately 1.5–6.5 keV for ERs and 6–30 keV for NRs; and after application of the single scatter, skin and OD veto, and 5.6 tonne fiducial volume cuts. Mass-weighted average activities are shown for composite materials and the ²³⁸U and ²³²Th chains are split into contributions from early- and late-chain, with the latter defined as those coming from isotopes below and including ²²⁶Ra and ²²⁴Ra, respectively.

Background Source	Mass	$^{238}U_{e}$	$^{238}U_{l}$	²³² Th,	232 Th _l	⁶⁰ Co	⁴⁰ K	n/yr	ER	NR
	(kg)	mBq/kg							(cts)	(cts)
Detector Components										
PMT systems	308	31.2	5.20	2.32	2.29	1.46	18.6	248	2.82	0.027
TPC systems	373	3.28	1.01	0.84	0.76	2.58	7.80	79.9	4.33	0.022
Cryostat	2778	2.88	0.63	0.48	0.51	0.31	2.62	323	1.27	0.018
Outer detector (OD)	22950	6.13	4.74	3.78	3.71	0.33	13.8	8061	0.62	0.001
All else	358	3.61	1.25	0.55	0.65	1.31	2.64	39.1	0.11	0.003
				subtotal						0.07
Surface Contamination	ı									
Dust (intrinsic activity, 500 ng/cm^2)									0.2	0.05
Plate-out (PTFE panels, 50 nBq/cm^2)									-	0.05
²¹⁰ Bi mobility (0.1 μ Bq/kg LXe)									40.0	-
Ion misreconstruction (50 nBq/cm^2)									-	0.16
²¹⁰ Pb (in bulk PTFE, 10 mBq/kg PTFE)									-	0.12
	1 0	,					SI	ibtotal	40	0.39
Xenon contaminants										
222 Bn (1.8 uBa/kg)									681	-
220 Rn (0.09 µBq/kg)									111	-
nat Kr (0.015 ppt g/g)									24.5	-
nat Ar (0.45 ppb g/g)									2.5	-
subtotal									819	0
Laboratory and Cosme	ogenics									
Laboratory rock walls									4.6	0.00
Muon induced neutrons									-	0.06
Cosmogenic activation									0.2	-
							SI	ibtotal	5	0.06
Physics										
136 Xe $2\nu\beta\beta$									67	-
Solar neutrinos: $pp+{}^{7}\text{Be}+{}^{13}\text{N}$, ${}^{8}\text{B}+hep$									191	0*
Diffuse supernova neutrinos (DSN)									-	0.05
Atmospheric neutrinos (Atm)									-	0.46
							SI	ıbtotal	258	0.51
Total									1131	1.03
Total (with 99.5% ER discrimination, 50% NR efficiency)									5.66	0.52
Sum of ER and NR in LZ for 1000 days, 5.6 tonne FV, with all analysis cuts								6.	18	

* Below the 6 keV NR threshold used here.

- 5.6 t fiducial volume, 1000 live-days and selection for 40 GeV WIMP: 1 bkgd event exp
 - NR backgrounds mostly from neutrons coming from (α ,n) on PTFE surfaces
 - ER backgrounds mostly from radon daughters

Performance

- At 200 keV, 500 µs after S1 scatter the OD will veto 96.5% of all neutrons
- Veto reduces bkgds from 12 counts to 1 count for 1000 live-days
- OD almost doubles the fiducial LXe volume and additional information to constrain the NR background in the PLR

arXiv:2102.11740

• Backgrounds dominated by ²²²Rn and ¹²⁴Xe vvββ

- Two cryostats, inner and outer made from low activity titanium
- Outer cryostat vessel (OCV) underground
- Inner cryostat vessel (ICV), lined with PTFE, holds TPC

- Capture remaining external and internal backgrounds
- Central TPC surrounded with three active veto detectors:
 - \circ Xe 'skin' to veto $\gamma\text{-rays},$
 - Outer Detector to veto neutrons in Gd-LS
 - Muons in water
- Increases the usable active (fiducial) volume by 70%
- In case of discovery to be able to demonstrate a possible DM signal is not induced by neutrons

- Multiple HV grids for 3D reconstruction and ER/NR discrimination
 - High mechanical strength
 - 97% optical transparency
 - Background free (photo emission, others)

https://www.youtube.com/watch?v=yNycDcMQkss

TPC Field Cage

- 57 titanium field shaping rings
- **PTFE** for reflectivity and stability
- Completed December 2018

Bjoern Penning

• 625 PMTs:

- 253 x 3" top array
- 241 x 3" bottom array
- 93 x1" and 38 x2" skin

Bjoern Penning

