European Physical Society Conference on High Energy Physics.

Online conference, July 26-30, 2021

Dark Matter searches at Belle II, Belle and BaBar

Marcello Campajola

University of Naples 'Federico II' and INFN marcello.campajola@na.infn.it

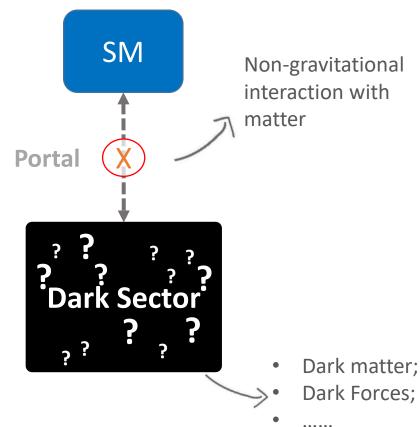
Dark Sector searches

Motivations & Models

[1] Batell et al., *Phys. ReV. D* **80** (2009)

[2] Essig et al., <u>arXiv:1311.0029 (2013)</u>

The absence of DM discoveries by the LHC or direct detection experiments motivate the interest for models with **low-mass dark matter** candidates or mediators.


A possible MeV - GeV theoretical scenarios:

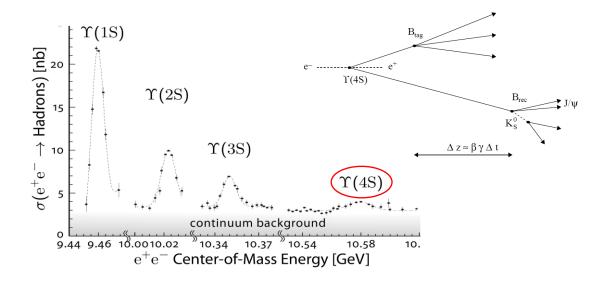
- DM not charged directly under the SM;
- DM may interact with SM through several "portal" interactions (e.g. [1, 2]).

$$\mathcal{L}_{
m portals} = -rac{\epsilon}{2} B^{\mu
u} A'_{\mu
u} - H^\dagger H (AS + \lambda S^2) - Y^{ij}_N ar{L}_i H N_j + \cdots$$
Vector portal Higgs portal Neutrino portal

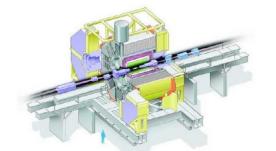
Not just solving the DM puzzle. Could explain:

- some astrophysics anomalies (positron excess, 3.5 keV line, ...);
- the (g-2) anomaly;
- some flavour anomalies: R_K, R_{K*} (LHCb, Belle, ..).

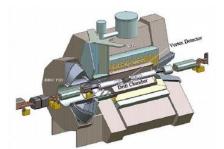
B-factory experiments


At the intensity frontier

Dedicated experiments at e^+e^- asymmetric-energy colliders for the production of quantum coherent $B\bar{B}$ pairs.


- Collision energy at Y(nS):
 - Mainly at Y(4S): 10.58 GeV;
 - BR(Y(4S) \rightarrow BB) > 96%;
- Asymmetric beam energies: e.g. 8.0/3.5 GeV (e-/e+) (Belle):
 - Boosted $B\bar{B}$ pairs;
- Very high luminosity: $> 10^{34}$ cm⁻² s⁻¹;

First generation of B-Factories:


- **Belle@KEKB**, KEK, Tsukuba (JP), 1999-2010, $\int L dt = 1 ab^{-1}$;
- BaBar@PEP-II, SLAC (USA), 1999-2008, $\int L dt = 0.5 ab^{-1}$;

Belle II @ SuperKEKB

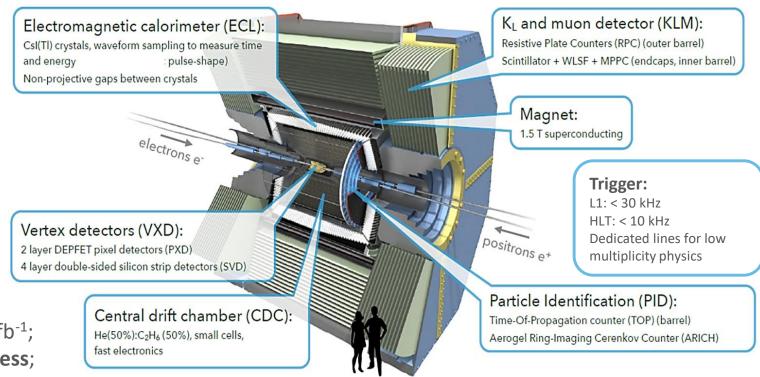
A next generation B-factory

See talks on:

- Status and perspectives of the SuperKEKB project
- Highlights from the BELLE II Experiment and Flavour Physics in e⁺e⁻

Major upgrade to the accelerator with a x30 increase in the instantaneous luminosity with respect to KEKB (expected luminosity $L = 6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$):

- 1.5x from higher beam current;
- 20x from final focus magnets;


Upgraded detector:

- Better performances;
- but higher backgrounds;
- Much better trigger;

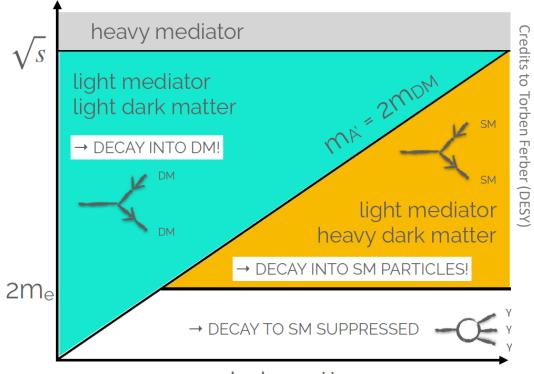
Data taking schedule:

- First collisions in 2018 (Commissioning) ~ 0.5 fb⁻¹;
- Main operation since 2019. 213.5 fb⁻¹ in progress;
- Ultimate goal: 50 ab⁻¹ (50× Belle).

The Belle II Physics Book, <u>PTEP **2019** 12 (2019)</u>

Dark Sector searches

at B-factories


Probability of interaction of DM with detectors is negligible:

- Search for mediators;
- Search for missing energy signatures;
- Search for both;

Why dark sector searches at B-factories?

- High luminosity;
- Closeness to the light region;
- Well defined initial state, closed kinematics;
- Clean environment and low background;
- Hermetic detector;
- Excellent PID capability;

The relationship between masses of the mediator and DM candidates lead to **different topologies**.

dark matter mass m_{DM}

@ B-factories excellent capabilities for low multiplicity and missing energy signatures

mediator mass

Dark Sector searches

State of art @ B-factories

A lot of DM searches @ B-factories excluded Dark Sector parameters down to:

	Belle	BaBar	Belle II
$ee ightarrow \gamma A', A' ightarrow ll$	-	$\epsilon < 5 \times 10^{-4} \ (514 \ \mathrm{fb^{-1}}) \ [1]$	-
$ee ightarrow \gamma A', A' ightarrow ext{invisible } oldsymbol{ \checkmark }$	-	$\epsilon < 10^{-3} (53 \text{ fb}^{-1}) [2]$	-
$B^0 o A'A'$	BF $< 10^{-7} (711 \text{ fb}^{-1}) [3]$	-	-
$ee o \gamma \Upsilon_D$ (DM bound state)	-	$\epsilon < 10^{-3} \ (514 \ \mathrm{fb^{-1}}) \ [*]$	-
$ee ightarrow A'h', h' ightarrow A'A'$ ${\color{red} {m ec {m ec {m ec {m ec {m v}}}}}$	$\alpha_D \epsilon < 10^{-9} \ (977 \ \text{fb}^{-1}) \ [4]$	$\alpha_D \epsilon < 10^{-9} \ (514 \ \text{fb}^{-1}) \ [5]$	-
$ee ightarrow \mu \mu Z', Z' ightarrow ll$ 🕖	$g' < 10^{-3} (643 \mathrm{fb}^{-1}) [*]$	$g' < 10^{-3} (514 \text{ fb}^{-1}) [1]$	-
$ee ightarrow \mu \mu Z', Z' ightarrow ext{invisible}$	-	-	$g' < 5 \times 10^{-2} \ (0.27 \ \text{fb}^{-1}) \ [6]$
$\eta ightarrow \gamma A_q^\prime, A_q^\prime ightarrow \pi\pi$	$\alpha_q < 5 \times 10^{-3} \ (976 \ {\rm fb^{-1}}) \ [7]$	-	
$ee ightarrow au au\phi_ au,\phi_ au ightarrow ll$	-	$\eta < 5 \times 10^{-1} \ (514 \ \mathrm{fb^{-1}}) \ [8]$	
$ee o \gamma a, a o \gamma \gamma$ \checkmark	-	-	$g_{a\gamma\gamma} < 10^{-3} \mathrm{GeV^{-1}} (0.45 \mathrm{fb^{-1}}) [9]$
$B^{\pm} ightarrow K^{\pm}a, a ightarrow \gamma \gamma$	-	$g_{aWW} < 10^{-5} \mathrm{GeV^{-1}} \ (424 \mathrm{fb^{-1}}) \ [*]$	-
$\Upsilon(2S,3S) o \gamma A^0, A^0 o \mu \mu$	-	$(99, 122 \times 10^6 \Upsilon(2S, 3S)) [10]$	-
$\Upsilon(3S) ightarrow \gamma A^0, A^0 ightarrow au au$	-	BF $< 10^{-5} (122 \times 10^6 \Upsilon(3S))$ [11]	-
$\Upsilon(2S) \to \Upsilon(1S)\pi\pi, \Upsilon(1S) \to \gamma A^0, A^0 \to \text{invisible}$	BF $< 10^{-6} (157 \times 10^6 \Upsilon(2S))$ [12]	BF $< 10^{-6} (98 \times 10^6 \Upsilon(2S))$ [13]	-
$\Upsilon(2S,3S) \to \pi\pi\Upsilon(1S), \Upsilon(1S) \to \gamma A^0, A^0 \to \mu\mu$	-	BF $< 10^{-6}(93, 117 \times 10^{6}\Upsilon(2S, 3S))$ [14]	-

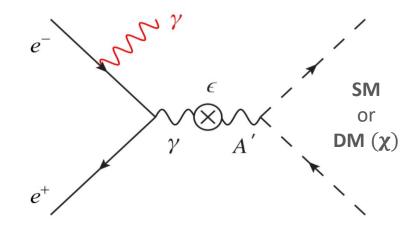
References in *spare slides*

Disclaimer: a non exhaustive talk (biased overview on some recent results).

[1] P. Fayet, *Phys. Lett. B* **95**, 285 (1980),[2] P. Fayet, *Nucl. Phys. B* **187**, 184 (1981)

General remarks

A new massive gauge boson A' of spin = 1 coupling to the SM photons through the kinetic mixing with strength ε , called **dark photon** [1,2].


$$\hookrightarrow$$
 $\mathcal{L}_{int} = \epsilon e A'_{\mu} J^{\mu}_{em}$

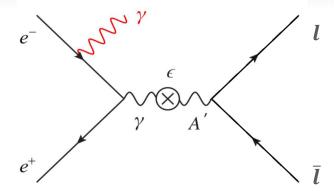
At e^+e^- colliders different production mechanisms:

• Direct production, meson decay, Higgsstrahlung.

Direct production with ISR particularly interesting: $e^+e^- o \gamma_{ISR} \, A'$;

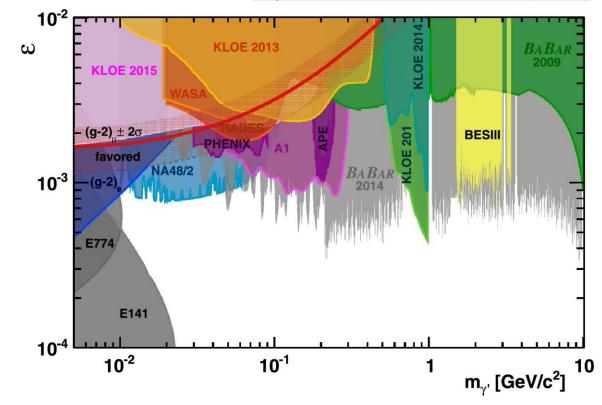
- Two basic scenarios depending on A' vs DM masses relationship:
 - $m_{\chi} > \frac{1}{2} m_{A'} \rightarrow A'$ visible decays to SM particles <u>BaBar(2014)</u>;
 - $m_{\chi} < \frac{1}{2} m_{A'} \rightarrow \text{A'}$ invisible decays to LDM <u>BaBar(2017)</u>;

Visible decay



- **Signature**: bump in the di-lepton invariant mass;
- **Background**: resonant backgrounds from J/ψ , $\psi(2S)$ etc. (excluded from the measurement) but otherwise smoothly varying background;

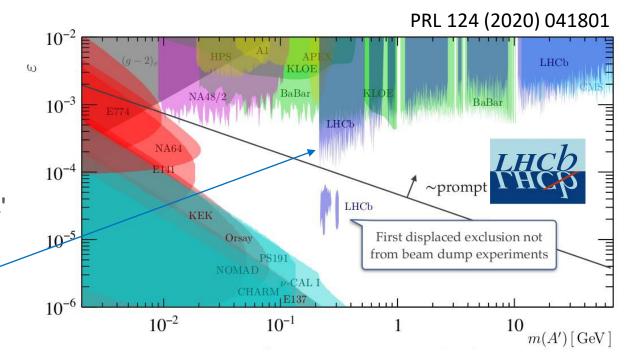
Full data-set (514 fb⁻¹) collected at Y(2S), Y(3S) and Y(4S) used.


90% C.L. upper limit on the mixing strength ε as a function of A' mass at level of $O(10^{-3})$:

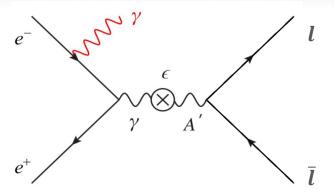
- Best limits almost everywhere in the GeV range;
- In the ~ 200-700 MeV range LHCb better results.

Phys. Rev. Lett. 113, 201801 (2014)

Visible decay


BaBar searched for a dark photon visible decay in e^+e^- and $\mu^+\mu^-$ final states (τ or hadrons much harder experimentally);

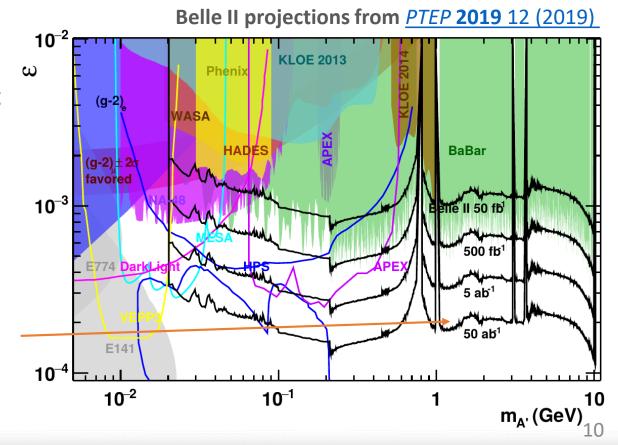
- Signature: bump in the di-lepton invariant mass;
- **Background**: resonant backgrounds from J/ψ , $\psi(2S)$ etc. (excluded from the measurement) but otherwise smoothly varying background;

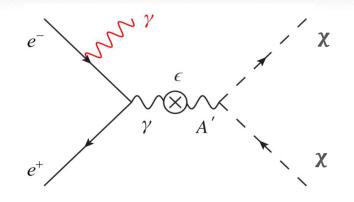

Full data-set (514 fb⁻¹) collected at Y(2S), Y(3S) and Y(4S) used.

90% C.L. upper limit on the mixing strength ε as a function of A' mass at level of $O(10^{-3})$:

- Best limits almost everywhere in the GeV range;
- In the ~ 200-700 MeV range LHCb better results.

Visible decay




BaBar searched for a dark photon visible decay in e^+e^- and $\mu^+\mu^-$ final states (taus or hadrons much harder experimentally);

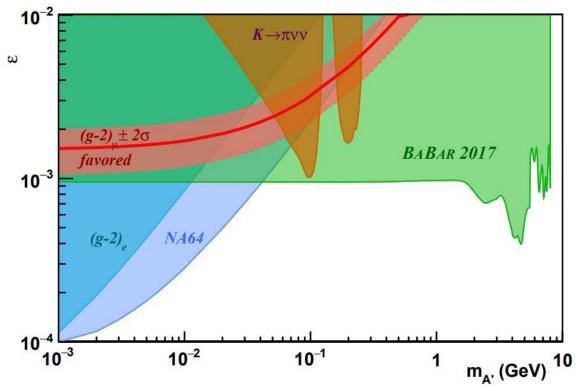
- **Signature**: bump in the di-lepton invariant mass;
- **Background**: resonant backgrounds from J/ψ , $\psi(2S)$ etc. (excluded from measurement) but otherwise smoothly varying background;

Belle II is expected to achieve the leading sensitivity: search currently in preparation.

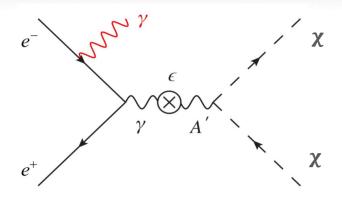
Invisible decay

BaBar searched also for the invisible decay:

- Signal:
 - Only one mono-chromatic high-E photon γ_{ISR} ;
 - Bump in the photon energy: $E_{\gamma} = \frac{s M_{A'}^2}{2\sqrt{s}} \quad (on\text{-shell})$
- SM backgrounds: $ee \rightarrow \gamma \gamma(\gamma)$, $ee \rightarrow ee(\gamma)$, Cosmics; (low mass) (high mass)


Needs an excellent knowledge of the detector.

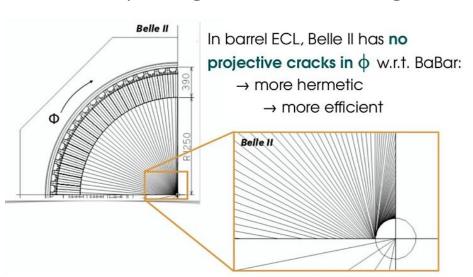
Requires a single photon trigger:

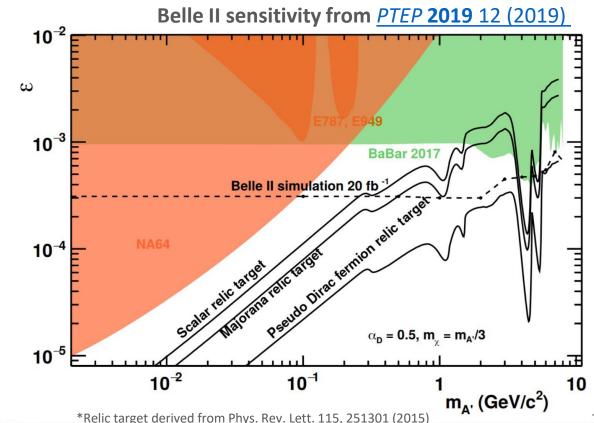

- Available only on ~ 10% of data (50 fb⁻¹);
- trigger threshold: $E_{\nu} > 1.5$ GeV;

90% C.L. upper limits on mixing strength ε at the level of $O(10^{-3})$.

Phys. Rev. Lett. 119, 131804 (2017)

Invisible decay





@ Belle II very promising expectations even with the early dataset.

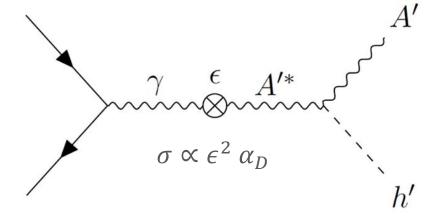
Expected to perform better than BaBar due to:

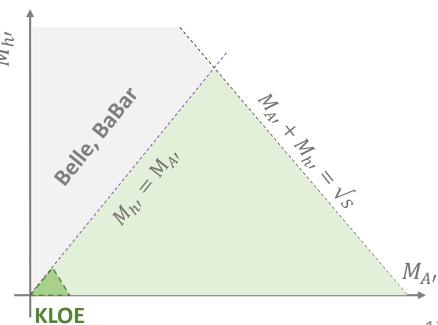
- smaller boost and larger calorimeter ⇒ larger acceptance;
- Trigger threshold lower than in BaBar;
- KLM veto;
- no ECL cracks pointing to the interaction regions;

Dark Higgsstrahlung searches

[1] B. Batell, et al., *Phys. Rev. D* 79, 115008 (2009)

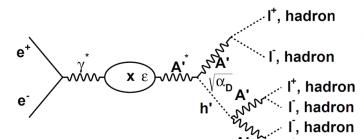
General remarks


Next to minimal dark photon model:


- A' mass could be generated via a spontaneous symmetry breaking mechanism, adding a dark Higgs boson h' to the theory [1].
- Both the dark photon and the dark Higgs can be produced at an e^+e^- collider via the dark Higgsstrahlung process:

$$e^+e^- \rightarrow A'^* \rightarrow h'A'$$

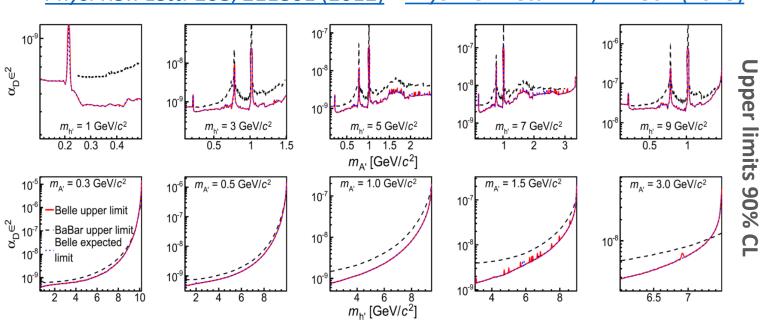
Different scenarios depending on the mass hypothesis.:


- $m_{h'} > m_{A'}$: $h' \rightarrow A'A' \rightarrow 4l$, 4had, 2l + 2had. Investigated by BaBar(2012) and Belle(2015)
- $m_{h'} < m_{A'}$: h' is long-lived, thus invisible. Constrained only by **KLOE(2015)**.

Dark Higgsstrahlung searches

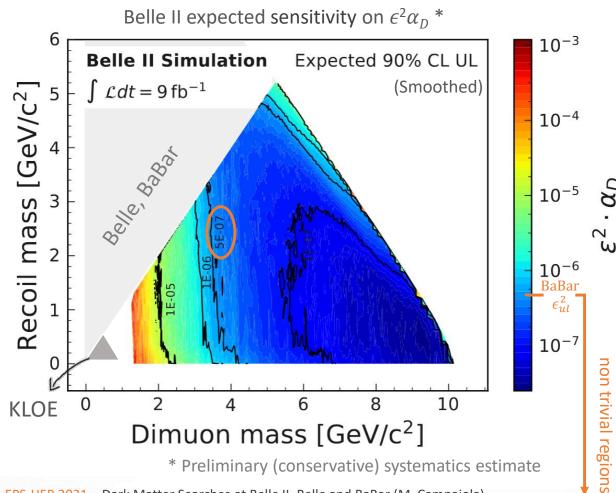
Visible dark Higgs

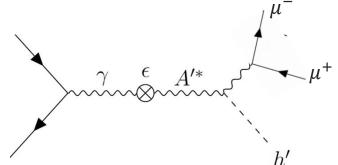
BaBar and Belle searched for the visible DH:


- **Signal**: three pairs of tracks (ee, $\mu\mu$, $\pi\pi$) at the same mass and no missing energy;
- Background: almost background free;

Full data-sets from both experiments.

90% C.L. upper limits on $\epsilon^2 \times \alpha_D$ at the level of $O(10^{-8} - 10^{-10})$:


 Belle limits improve upon and explore slightly wider mass ranges than BaBar.


Phys. Rev. Lett. 108, 211801 (2012) Phys. Rev. Lett. 114, 211801 (2015)

Dark Higgsstrahlung searches

Invisible dark Higgs

Belle II is exploring the *invisible h'* case in two muons and missing energy final state:

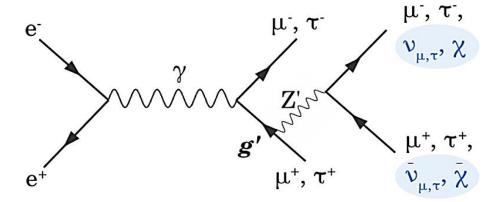
- Signature: a 2d peak in recoil vs dimuon mass;
- **Background** from QED processes: $\mu\mu(\gamma)$, $\tau\tau(\gamma)$, $ee\mu\mu$;

Very promising expectations even with the 2019 only dataset ($\sim 9 \text{ fb}^{-1}$).

- Accessing unconstrained region beyond the KLOE coverage;
- Probing non-trivial $\epsilon^2 \alpha_D$ couplings.

Analysis to be finalized shortly (by end 2021).

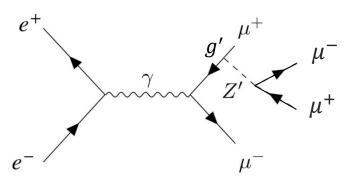
[1] Shuve et al., *Phys. Rev. D* **89** (2014)


[2] Altmannshofer et al., <u>JHEP 106 (2016)</u>

General remarks

New massive vector boson Z' coupling only to the 2nd and 3rd generation of leptons ($L_{\mu}-L_{\tau}$ model);

This model may explain [1, 2]:


- DM puzzle;
- (g-2)_u anomaly;
- B-physics anomalies: e.g., R_K, R_{K*};

Experimental signatures:

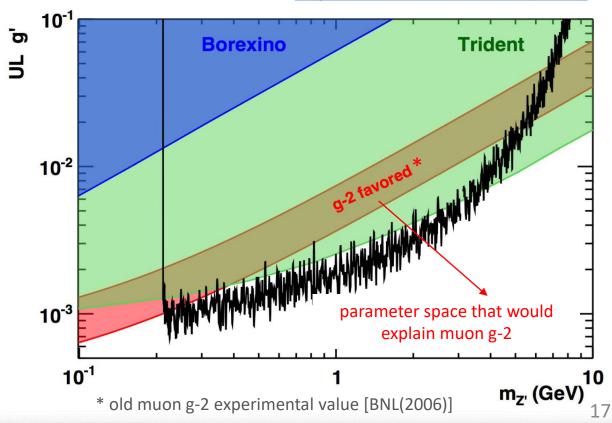
- **Visible decay** into a muon (tau) pair. Constrained by <u>BaBar(2016)</u> and <u>CMS(2019)</u> and neutrino-nucleus scattering processes (neutrino trident production, CCFR experiment at Fermilab);
- Invisible decay. First physics result from <u>Belle II (2020)</u>;

Visible decay

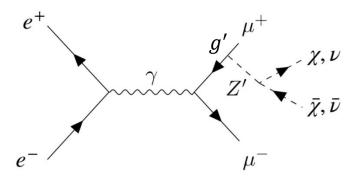
BaBar searched a Z' visible decay in a four muon final state.

- Signature: peak in the invariant mass of two muons;
- **Background**: QED combinatorial backgrounds, as well as peaking backgrounds from $e^+e^- \rightarrow \pi + \pi J/\psi$ and ρ ;

Full BaBar data set: 514 fb⁻¹.


90% C.L. upper limits on g' at the level of $O(10^{-3})$:

• $(g-2)_{\mu}$ band largely excluded;


Post scriptum:

- @ Belle: same measurement based on Belle full luminosity, to be submitted to journal very soon. -> see <u>Belle talk</u>;
- @ Belle II: good prospects with O(100 fb⁻¹) (with aggressive background suppression);

Invisible decay

Phys. Rev. Lett. 124 (2020) 141801

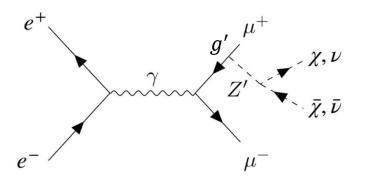
6

Belle II looked at the two muon + missing energy final state.

- Signature: a peak in the mass distribution of the recoiling system against $\mu\mu$ pair;
- Background sources: $\mu\mu(\gamma)$, $\tau\tau(\gamma)$, $ee\mu\mu$;

Used first data from 2018 commissioning run (0.276 fb⁻¹). **90% C.L. upper limits on g' down to** *O*(5 x 10⁻²).

First physics paper by Belle II

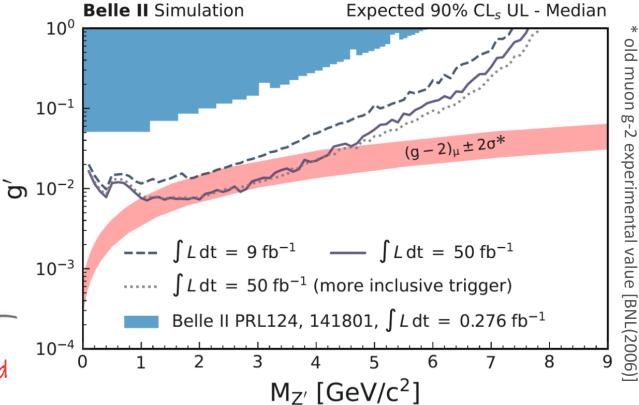

First results ever for the *Z'* to invisible decay

Phys. Rev. Lett. **124** (2020) 141801

10⁻¹ Belle II 2018 L_{μ} - L_{τ} , BF(Z' \rightarrow inv)=1 (obs.) 90% CL UL L_{μ} - L_{τ} , BF(Z' \rightarrow inv)=1 expected UL 10⁻⁴ 10⁻⁴ 10⁻⁴ 10⁻⁴ 10⁻⁴ 10⁻⁴ 10⁻⁴ 10⁻⁴ 10⁻⁴ 10⁻⁸ 10⁻⁸ 10⁻⁹ 10⁻⁹ 10⁻¹ 10⁻¹

2

Invisible decay


Belle II looked at the two muons + missing energy final state.

- Signature: a peak in the mass distribution of the recoiling system against $\mu\mu$ pair;
- Background sources: $\mu\mu(\gamma)$, $\tau\tau(\gamma)$, $ee\mu\mu$;

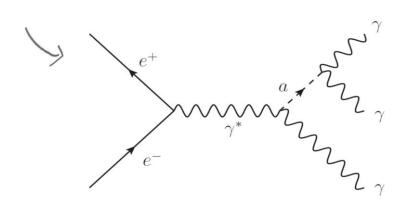
Short term projections with several improvements:

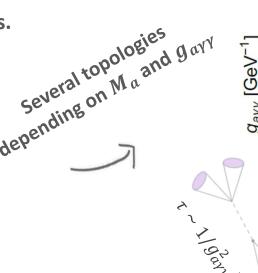
- Much higher integrated luminosity (already on tape);
- Analysis improvements;
- New triggers.

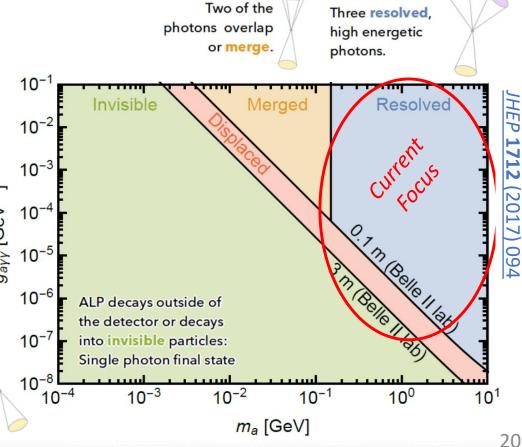
Starting to probe the (g-2), band

Axion Like Particles

General remarks


Axion Like Particles (ALPs) are pseudo-scalars particles (α) that couple to fermions or boson.


Naturally coupling to photons:


$$\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

 ALPS can be both Dark Matter candidates and Dark Sector mediators, and they appear in many BSM scenarios.

Belle II searched for the ALP-strahlung process.

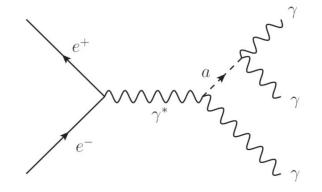
Axion Like Particles

ALP-strahlung

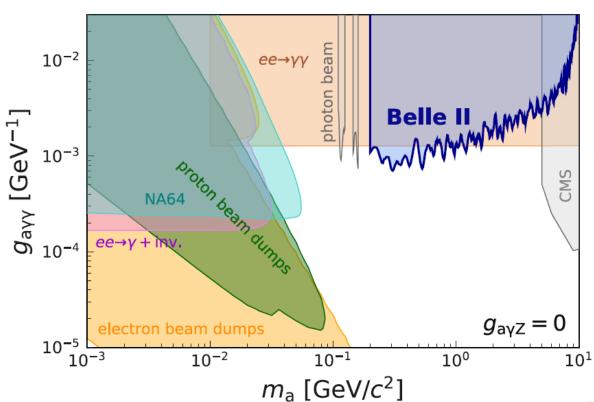
- 3γ that add up to the beam energy;
- bump on di-photon mass;

Background: $\gamma \gamma(\gamma)$; $e^+e^-(\gamma)$; $P \gamma(\gamma)$ with $P = \pi^0, \eta, \eta'$;

Used first data from 2018 commissioning run (0.455 fb⁻¹);


90% C.L. upper limits on $g_{a\gamma\gamma}$ down to $O(10^{-3})$.

Second physics paper by Belle II


First results ever for ALPs @ B-factories

Phys. Rev. Lett. 125, 161806 (2020)

Phys. Rev. Lett. 125, 161806 (2020)

Conclusions

The persisting null results from heavy new physics LHC searches and direct underground searches (not definitive in both cases) make the light dark sector scenario more and more attractive.

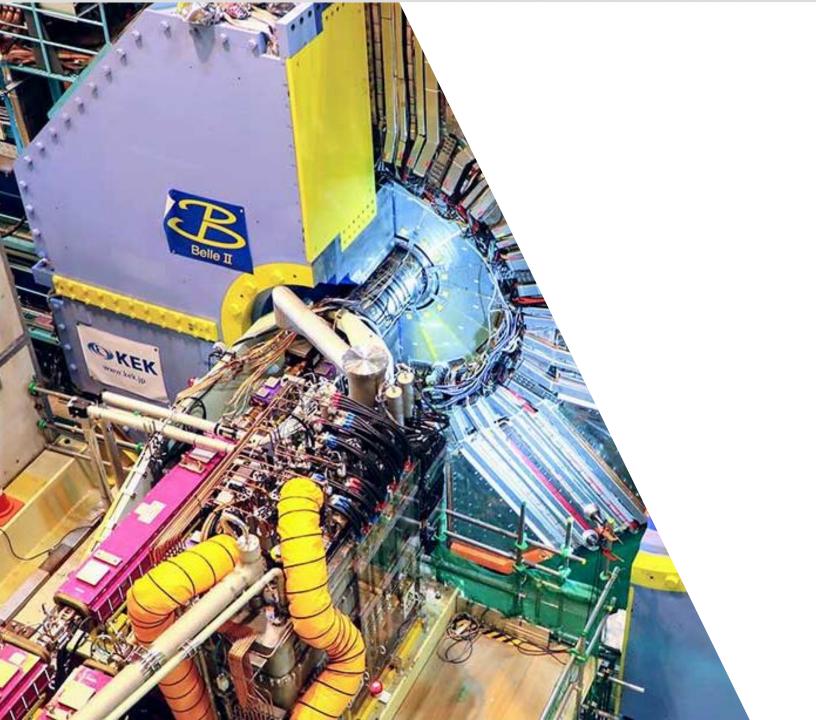
B-factories are an excellent laboratory to probe dark sector models:

sensitive to regions of parameter space that would explain dark matter and/or other SM anomalies

- Belle and BaBar already excluded many DS models.
 - In this talk: a subset of the results from the past years;

parallel talks

Latest dark sector searches at the Belle Experiment


Search for self-interacting dark matter with the BABAR detector

- Belle II started operations in 2018. Up to now ~ 213 fb⁻¹ collected.
 - Broad program of dark searches;
 - First physics results and publications are already out: invisible Z' and ALP $\rightarrow \gamma \gamma$; —
 - Dark Higgsstrahlung and invisible dark photon coming soon;
 - Many more dark sector models (to be) explored.
 - Leading sensitivity over the next few years.

e.g., see parallel talk on:

Prospects for long-lived particle searches at Belle II

Marcello Campajola

University of Naples 'Federico II' and INFN

Dark Sector searches

State of art @ B-factories

A lot of DM searches @ B-factories excluded Dark Sector parameters down to:

	Belle	BaBar	Belle II
$ee ightarrow \gamma A', A' ightarrow ll$	-	$\epsilon < 5 \times 10^{-4} \ (514 \ \mathrm{fb^{-1}}) \ [1]$	-
$ee ightarrow \gamma A', A' ightarrow ext{invisible } oldsymbol{ } old$	-	$\epsilon < 10^{-3} (53 \text{ fb}^{-1}) [2]$	-
$B^0 o A'A'$	BF $< 10^{-7} (711 \text{ fb}^{-1}) [3]$	- -	-
$ee \rightarrow \gamma \Upsilon_D \ ({ m DM \ bound \ state})$	-	$\epsilon < 10^{-3} \; (514 \; \text{fb}^{-1}) \; [*]$	-
$ee ightarrow A'h',h' ightarrow A'A'$ ${\color{red} {m{ o}}}$	$\alpha_D \epsilon < 10^{-9} \ (977 \ \text{fb}^{-1}) \ [4]$	$\alpha_D \epsilon < 10^{-9} (514 \text{ fb}^{-1}) [5]$	-
$ee ightarrow \mu \mu Z', Z' ightarrow ll$	$g' < 10^{-3} (643 \mathrm{fb}^{-1}) [*]$	$g' < 10^{-3} (514 \text{ fb}^{-1}) [1]$	-
$ee ightarrow \mu \mu Z', Z' ightarrow ext{invisible}$	-	-	$g' < 5 \times 10^{-2} \ (0.27 \ \text{fb}^{-1}) \ [6]$
$\eta ightarrow \gamma A_q', A_q' ightarrow \pi \pi$	$\alpha_q < 5 \times 10^{-3} \ (976 \ {\rm fb^{-1}}) \ [7]$	-	
$ee ightarrow au au\phi_ au,\phi_ au ightarrow ll$	-	$\eta < 5 \times 10^{-1} \ (514 \ \mathrm{fb^{-1}}) \ [8]$	
$ee \rightarrow \gamma a, a \rightarrow \gamma \gamma$ \checkmark	-	-	$g_{a\gamma\gamma} < 10^{-3} \mathrm{GeV^{-1}} (0.45 \mathrm{fb^{-1}}) [9]$
$B^{\pm} ightarrow K^{\pm}a, a ightarrow \gamma \gamma$	-	$g_{aWW} < 10^{-5} \mathrm{GeV^{-1}} (424 \mathrm{fb^{-1}}) [*]$	-
$\Upsilon(2S,3S) \to \gamma A^0, A^0 \to \mu\mu$	-	$(99, 122 \times 10^6 \Upsilon(2S, 3S)) [10]$	-
$\Upsilon(3S) ightarrow \gamma A^0, A^0 ightarrow au au$	-	BF $< 10^{-5} (122 \times 10^6 \Upsilon(3S))$ [11]	-
$\Upsilon(2S) \to \Upsilon(1S)\pi\pi, \Upsilon(1S) \to \gamma A^0, A^0 \to \text{invisible}$	BF $< 10^{-6} (157 \times 10^6 \Upsilon(2S))$ [12]	BF $< 10^{-6} (98 \times 10^6 \Upsilon(2S))$ [13]	-
$\Upsilon(2S,3S) \to \pi\pi\Upsilon(1S), \Upsilon(1S) \to \gamma A^0, A^0 \to \mu\mu$	-	BF $< 10^{-6}(93, 117 \times 10^{6}\Upsilon(2S, 3S))$ [14]	-

References in *spare slides*

Spare

Dark Sector state of art @ B-factories

References

- [1] J. P. Lees, , et al., Search for a dark photon in e^+e^- collisions at babar, Phys. Rev. Lett. 113 (2014) 201801.
- [2] J. P. Lees, , et al., Search for invisible decays of a dark photon produced in e^+e^- collisions at babar, Phys. Rev. Lett. 119 (2017) 131804.
- [3] S. H. Park, et al., Search for the dark photon in $B^0 \to A'A'$, $A' \to e^+e^-$, $\mu^+\mu^-$, and $\pi^+\pi^-$ decays at Belle, JHEP 04 (2021) 191. arXiv:2012.02538, doi:10.1007/JHEP04(2021)191.
- [4] I. Jaegle, Search for the dark photon and the dark Higgs boson at Belle, Phys. Rev. Lett. 114 (21) (2015) 211801.
- [5] J. Lees, et al., Search for Low-Mass Dark-Sector Higgs Bosons, Phys. Rev. Lett. 108 (2012) 211801.
- [6] I. Adachi, et al., Search for an Invisibly Decaying Z' Boson at Belle II in $e^+e^- \to \mu^+\mu^-(e^\pm\mu^\mp)$ Plus Missing Energy Final States, Phys. Rev. Lett. 124 (14) (2020) 141801. arXiv:1912.11276, doi:10.1103/PhysRevLett.124.141801.
- [7] E. Won, et al., Search for a dark vector gauge boson decaying to $\pi^+\pi^-$ using $\eta \to \pi^+\pi^-\gamma$ decays, Phys. Rev. D 94 (9) (2016) 092006. arXiv:1609.05599, doi:10.1103/PhysRevD.94.092006.
- [8] J. P. Lees, et al., Search for a Dark Leptophilic Scalar in e⁺e⁻ Collisions, Phys. Rev. Lett. 125 (18) (2020) 181801.
 arXiv:2005.01885, doi:10.1103/PhysRevLett.125.181801.
- [9] F. Abudinén, et al., Search for Axion-Like Particles produced in e^+e^- collisions at Belle II, Phys. Rev. Lett. 125 (16) (2020) 161806.
- [10] B. Aubert, et al., Search for Dimuon Decays of a Light Scalar Boson in Radiative Transitions Upsilon —> gamma A0, Phys. Rev. Lett. 103 (2009) 081803. arXiv:0905.4539, doi:10.1103/PhysRevLett.103.081803.
- [11] B. Aubert, et al., Search for a low-mass Higgs boson in Y(3S) —> gamma A0, A0 —> tau+ tau- at BABAR, Phys. Rev. Lett. 103 (2009) 181801. arXiv:0906.2219, doi:10.1103/PhysRevLett.103.181801.
- [12] I. S. Seong, et al., Search for a light CP-odd Higgs boson and low-mass dark matter at the Belle experiment, Phys. Rev. Lett. 122 (1) (2019) 011801. arXiv:1809.05222, doi:10.1103/PhysRevLett.122.011801.
- [13] P. del Amo Sanchez, et al., Search for Production of Invisible Final States in Single-Photon Decays of Υ(1S), Phys. Rev. Lett. 107 (2011) 021804. arXiv:1007.4646, doi:10.1103/PhysRevLett.107.021804.
- [14] J. P. Lees, et al., Search for di-muon decays of a low-mass Higgs boson in radiative decays of the Υ(1S), Phys. Rev. D 87 (3) (2013) 031102, [Erratum: Phys.Rev.D 87, 059903 (2013)]. arXiv:1210.0287, doi:10.1103/PhysRevD.87.031102.