

eV-threshold Direct Dark Matter Searches

Daniel Baxter ...on behalf of the DAMIC Collaboration

> EPS-HEP Conference July 26, 2021

Dark Matter

Direct Detection

- Build a detector to identify the small energy deposition of dark matter scattering off SM particles
- Scattering off nuclei (elastic):
 - The standard WIMP paradigm
 - 1-1000 GeV DM masses
 - 0.3-300 keV recoil energy
- Scattering off electrons (inelastic):
 - As in the case of a dark photon
 - 1-1000 MeV DM masses
 - 1-100 eV recoil energy

production at colliders

DM

direct detection

SM

Direct Detection

- Build a detector to identify the small energy deposition of dark matter scattering off SM particles
- Scattering off nuclei (elastic):
 - The standard WIMP paradigm
 - 1-1000 GeV DM masses
 - 0.3-300 keV recoil energy
- Scattering off electrons (inelastic):
 - As in the case of a dark photon
 - 1-1000 MeV DM masses
 - 1-100 eV recoil energy

thermal freeze-out (early Univ.) indirect detection (now)

DM

direct detection

SM

SuperCDMS HVeV (Silicon)

SEE ALSO YAN LIU'S TALK (NEXT)

• Detectors take advantage of the Neganov-Trofimov-Luke effect to amplify single-charge production into above-threshold phonon signal

N. Kurinsky, Ph.D. thesis (2018)

EDELWEISS (Germanium)

Sub-MeV Dark Matter Searches with EDELWEISS: results and prospects

CNIS

H.Lattaud on behalf of the EDELWEISS collaboration IP2I,CNRS/IN2P3.

Recent low-mass results : PRL 125, 141401 (2020) EARLIER TODAY SEE TALK FROM

Pros and Cons of NTL detectors

- sub-Kelvin temperatures suppress thermal dark rates well below current detector sensitivity
- Operation in 0V mode (turning off NTL effect) allows same-detector measurement of calorimetric rates to compare with ionization rates
- Backgrounds from both phonon and charge production must be decoupled
- Excellent timing resolution
- Poor position resolution makes separation of surface and bulk effects/backgrounds challenging

EPS-HEP Conference 2021 – DAMIC – Daniel Baxter

Charge Coupled Devices

- sub-Kelvin temperatures suppress thermal dark rates well below current detector sensitivity
- Operation in 0V mode (turning off NTL effect) allows same-detector measurement of calorimetric rates to compare with ionization rates
- Backgrounds from both phonon and charge production must be decoupled
- Excellent timing resolution
- Poor position resolution makes separation of surface and bulk
 effects/backgrounds challenging

 Operation of 100-140K is sufficient to produce low dark rate measurements (see later slides)

- Pure charge/ionization measurement
 - ✓ Sacrifice timing information for 15 micron position resolution

DAMIC Collaboration

Charge Coupled Devices

Charge Coupled Devices

• Interaction with silicon produces free charge carriers...

...which are drifted across fully-depleted region...
 No loss of charge

- ...and collected in 15 micron square pixels...
 exceptional position resolution
- ...to be stored until a user-defined readout time after many hours.

Calibrating Detector Response

- Extremely linear energy response down to eV energies
- Spread of charges on pixel array is a measurement of event depth

EPS-HEP Conference 2021 – DAMIC – Daniel Baxter

Dark Current

- DAMIC at SNOLAB reported the lowest published dark current of any silicon experiment (at the time): 2 x 10⁻²² A cm⁻²
- SENSEI more recently achieved 1.3 x 10⁻²² A cm⁻² using Skipper CCDs [arXiv:2004.11378]

CCD No.	$\sigma_{ m pix}~[e^-]$	$[e^{-} \text{ mm}^{-2} \text{ img}^{-1}]$	μ_0 [e^-]	$\lambda = \lambda_{\text{tot}} - \lambda_d$ $[e^- \text{ mm}^{-2} \text{ d}^{-1}]$
1	1.628(1)	8.2(2)	-0.185(3)	2.8(2)
3	1.572(1)	7.8(2)	-0.160(4)	1.7(2)
4	1.594(1)	10.0(2)	-0.219(4)	1.0(2)
5	1.621(1)	8.5(2)	-0.183(4)	2.0(2)

A. Aguilar-Arevalo et al. PRL 123, 181802 (2019) [arXiv:1907.12628]

Limits from DAMIC at SNOLAB

A. Aguilar-Arevalo et al. PRL 123, 181802 (2019) [arXiv:1907.12628]

EPS-HEP Conference 2021 – DAMIC – Daniel Baxter

Skipper CCDs

- DAMIC at SNOLAB CCDs have 2e⁻ resolution
 - Limited by low-frequency noise
- "Skipper" CCDs average over multiple non-destructive measurements

• 0.07e⁻ resolution achieved in test chamber at Chicago!

SENSEI

Looking to the Future – DAMIC-M

- Prototype DAMIC-M "low background chamber" is ready to deploy...
- 25g of low background Skipper CCDs
- 2 (+4) cm of ancient (low background) lead on all sides of CCD
- Goal: 1 dru and 2 e^- threshold
- Data this year

EPS-HEP Conference 2021 – DAMIC – Daniel Baxter

Looking to the Future – DAMIC-M

• Full DAMIC-M detector to be deployed at Modane in 2023, with data and analysis extending at least through 2025

 10^{-35}

 10^{-36}

XENON1T

-DarkSide-50 -PICO-60 -CDMSlite

CRESST-III

XENON1T (Migdal)

DAMIC at SNOLAB

 10^{1}

Looking to the Future – OSCURA

OSCURA

- DoE-funded R&D project merging the efforts of DAMIC at SNOLAB, DAMIC-M, and SENSEI
- Full OSCURA funding $(\stackrel{5}{\underbrace{}} 10^{-36})$ expected pending delivery of $\stackrel{\circ}{\underbrace{}} 10^{-38}$ technical design proposal $(\stackrel{\circ}{\underbrace{}} 10^{-40})$
- Target 3 years of cumulative exposure with 10 kg silicon detector by 2030

Timeline of CCD Program

Conclusions

- DAMIC at SNOLAB continues to produce new, interesting results:
 - ER Limits: PRL 123, 181802 (2019) [arXiv:1907.12628]
 - NR Limits: PRL 125, 241803 (2020) [arXiv:2007.15622]
 - Backgrounds: JINST 16, P06019 (2021) [arXiv:2011.12922]
- SENSEI has advanced the CCD technology with singleelectron resolution Skipper amplifiers
 - And will continue to improve limits with larger exposures with lower background rates
- DAMIC-M will improve on this with lower backgrounds, single electron resolution, and much larger exposure
 - Low background chamber (2021-2022)
 - Full detector (installation 2023)
- OSCURA will push the limits of the CCD technology to 10 kg of silicon, single-electron threshold, 0.01 dru detector
 - DoE BRN funded R&D experiment merging the efforts of DAMIC at SNOLAB, DAMIC-M, and SENSEI

DAMIC Background Model (2020)

DAMIC WIMP Results (2020)

DAMIC at SNOLAB w/ Skipper

- Upgrade of SNOLAB detector with Skipper CCDs is underway
- Lower threshold enables us to study background model down to few eV

Background Contributions

- ~30% of background comes from the CCD bulk
 - ³H production from silicon activation or intrinsic ³²Si
- ~15% of background comes from wafer surface ²¹⁰Pb
- ~10% of background comes from CCD surface ²¹⁰Pb
- ~30% of background comes from OFHC copper
- ...remaining ~15% comes from a mixed bag of detector materials
 - $\ensuremath{\circ}$ Kapton cables and lead

Spatial coincidences allow rejection of decay chain isotopes intrinsic to bulk Si

A. Aguilar-Arevalo et al., JINST 16, P06019 (2021) [arXiv:2011.12922]

