# Generalizing the Ryu-Takayanagi formula to probe entanglement shadows of BTZ black holes 

Marius Gerbershagen

EPS-HEP Conference 2021
July, 292021
[arXiv:1910.05352, arXiv:2105.01097]

## Motivation

$$
S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)=\frac{\operatorname{Area}\left(\gamma_{A}\right)}{4 G_{N}} \quad \text { [Ryu, Takayanagi '06] }
$$



Generalizations in a number of directions:

- time-dependent states [Hubeny, Rangamani, Takayanagi '07]
- quantum corrections [Faulkner, Lewkowycz, Maldacena '13], [Engelhardt, Wall '15]
- "island formulas" to solve the black hole information paradox [Penington '20], [Almheiri, Mahajan, Maldacena, Zhao '20]
In this talk: generalization to also describe entanglement between different fields of the theory


## Entanglement shadows

- Finite regions of spacetime around naked singularities or black hole horizons not probed by RT surfaces

- How does this fit together with the "entanglement builds geometry" idea in AdS/CFT [Van Raamsdonk '10], [Swingle '12]?
- Previous conjecture: entanglement is not enough to probe wormhole interiors [Susskind '16]
- Other possible resolution: use generalized entanglement measures to probe entanglement shadows


## Entwinement

Previous studies for conical defects in $\mathrm{AdS}_{3}$ under the name of "entwinement" [Balasubramanian, Chowdhury, Czech, Boer '15],
[Balasubramanian et al. '16], [Balasubramanian, Craps, De Jonckheere, Sárosi '19]


Entanglement for non-spatial DoF = length of winding geodesic in conical defect


## D1/D5 system [David, Mandal, Wadia '02]

$1 / G_{N} \sim c$


- orbifold point
- supergravity point
$\longrightarrow T_{\text {string }} \sim g_{\mathrm{CFT}}$
large strings, weakly coupled CFT
small strings,
strongly coupled CFT


## The $S_{N}$ orbifold theory

- Take $N$ copies of a seed CFT, identify copies under the $S_{N}$ permutation symmetry
■ Twisted sectors: boundary conditions

$$
X^{i}(\phi+2 \pi)=X^{g(i)}(\phi) \quad \forall i \in 1, \ldots, N \text { and } g \in S_{N}
$$

Example: $X^{1}(\phi+2 \pi)=X^{2}(\phi), X^{2}(\phi+2 \pi)=X^{1}(\phi)$
$X^{1}$ and $X^{2}$ joined together into a single field,


- States in different twisted sectors are orthogonal to each other, thermal density matrix is block diagonal

$$
\Rightarrow \rho(\beta)=\frac{e^{-\beta H}}{Z(\beta)}=\bigoplus_{c} p_{C} \rho_{C}
$$

## Generalized entanglement entropy

- "Ordinary" entanglement entropy (used in RT formula):

$$
S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)
$$

for $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{A^{c}}, \rho_{A}=\operatorname{Tr}_{A^{c}}(\rho)$.
Each field $X^{i}$ localized in the same subregion $A$.
Now: new ingredients
1 Consider a subset $\left\{C_{i}\right\}$ of the twisted sectors

$$
\rho(\beta)=p_{\left\{C_{i}\right\}} \rho_{\left\{C_{i}\right\}} \oplus p_{\left\{C_{i}\right\}^{c}} \rho_{\left\{C_{i}\right\}^{c}}
$$

2 Non-spatial entanglement: fields $X^{i}$ localized in different subregions $A^{i}$

$$
\begin{gathered}
\rho_{\left\{A_{i}\right\},\left\{C_{i}\right\}}=\operatorname{Tr}_{\left\{A_{i}\right\}^{c}}\left(\rho_{\left\{C_{i}\right\}}\right) \\
\Rightarrow S_{\left\{A_{i}\right\},\left\{C_{i}\right\}}=-\operatorname{Tr}\left(\rho_{\left\{A_{i}\right\},\left\{C_{i}\right\}} \log \rho_{\left\{A_{i}\right\},\left\{C_{i}\right\}}\right)
\end{gathered}
$$

## Example: $S_{N / n}$ subsets

- Example: choose twisted sectors containing only cycles whose length is a multiple of some fixed $n \in \mathbb{N}$
- choose $A^{i}$ to calculate "single interval" entanglement: $A^{i}$ continuously connected by the twisted boundary conditions

Example: $n=3$

DoF

...
boundary conditions


## Computation of the entanglement entropy

- Replica trick: $S_{A}=-\lim _{\alpha \rightarrow 1} \frac{1}{1-\alpha} \log \operatorname{Tr}\left[\left(\rho_{A}\right)^{\alpha}\right]$
- $\operatorname{Tr}\left[\left(\rho_{A}\right)^{\alpha}\right]$ obtained from partition function on replica surface: take $\alpha$ copies, glue fields together along entangling interval

- $Z_{\text {replica }}$ decomposes into conformal blocks, dominated by single conformal block (up to $e^{-c}$ corrections)

$$
Z_{\text {replica }}=\sum_{p, q} a_{p, q} \mathcal{F}\left(h_{p}, h_{q}\right) \overline{\mathcal{F}}\left(\bar{h}_{p}, \bar{h}_{q}\right)
$$



## Computation of the generalized entanglement entropy

Same as for the ordinary entanglement entropy, except for:

- different $h_{q}$ dominates due to projection onto subset $\left\{C_{i}\right\}$ of twisted sectors,
- different choice of branch cuts on the replica surface due to the non-spatial DoF $\left\{A_{i}\right\}$,


Conformal blocks obtained from monodromy method following
[Zamolodchikov '87], [Hartman '13].

## Entanglement entropy results

- Small intervals and high temperatures:

$$
S_{\left\{A_{i}\right\},\left\{C_{i}\right\}}=\frac{c}{3 n} \log \left[\frac{\beta}{2 \pi \epsilon} \sinh \left(\frac{2 \pi^{2}(L+w)}{\beta}\right)\right]
$$

geodesic in BTZ geometry with opening angle $2 \pi L$ and winding number w


## Entanglement entropy results

■ Two-sided black hole:

$$
S_{\left\{A_{i}\right\},\left\{C_{i}\right\}}=\left\{\begin{aligned}
\frac{2 c}{3 n} \log \left[\frac{\beta}{2 \pi \epsilon} \cosh \left(\frac{4 \pi^{2} t}{\beta}\right)\right], & t<t_{c} \\
\frac{2 c}{3 n} \log \left[\frac{\beta}{2 \pi \epsilon} \sinh \left(\frac{2 \pi^{2}(L+w)}{\beta}\right)\right], & t>t_{c}
\end{aligned}\right.
$$

geodesics stretching through the wormhole up to $t=t_{c} \sim w / 2$


$$
t<t_{c}
$$



- Limit $N \rightarrow \infty$ : winding number $w$ unbounded from above $\Rightarrow$ can probe the BTZ geometry
- up to the horizon in the one-sided case (extremal surface barrier)
- in the entire space in the two-sided case
- Entanglement is enough to probe the entire BTZ black hole geometry!


## Comments

String theory interpretation:

- Projection onto twisted sectors corresponds to allowing only toroidal worldsheets with particular winding numbers
- $S_{N}$ orbifold dual to string theory in the tensionless limit [Gaberdiel, Gopakumar '18], [Eberhardt, Gaberdiel, Gopakumar '19], [Eberhardt '21]
- Moduli localization: only toroidal worldsheets covering the torus on the BTZ boundary an integer number of times contribute to partition function


## Comments

String theory interpretation:

- Projection onto twisted sectors corresponds to allowing only toroidal worldsheets with particular winding numbers
- $S_{N}$ orbifold dual to string theory in the tensionless limit [Gaberdiel, Gopakumar '18], [Eberhardt, Gaberdiel, Gopakumar '19], [Eberhardt '21]
- Moduli localization: only toroidal worldsheets covering the torus on the BTZ boundary an integer number of times contribute to partition function
Moving away from the orbifold point:
- Expectation: agreement between length of winding geodesics and generalized entanglement entropy extends beyond the tensionless limit
- Known to hold for ordinary entanglement entropy
- Holds to second order in conformal perturbation theory


## Summary/Outlook

Main points:

- Entanglement = geometry idea in AdS/CFT extends to (certain) measures of entanglement between different fields of the boundary CFT
- How general is this (extension beyond D1/D5 system, general bottom up models)?
- Proof in the spirit of [Lewkowycz, Maldacena '13]?
- Generalized entanglement measures can probe features of the bulk geometry inaccessible to RT surfaces (entanglement shadows)
- Is this special to $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ ?

