The strong CP problem, the infinite volume limit, and cluster decomposition

Carlos Tamarit, Technische Universität München

EPS-HEP 2021

2001.07152 [hep-th]

in collaboration with...

Wen-Yuan Ai U.C. Louvain

Björn Garbrecht TUM

Juan S. Cruz TUM

The aim:

Question the conventional view of the strong CP problem by showing that QCD with an **appropriate infinite 4d volume** limit **does not violate CP** regardless of the value of the θ **angle**

The novelty:

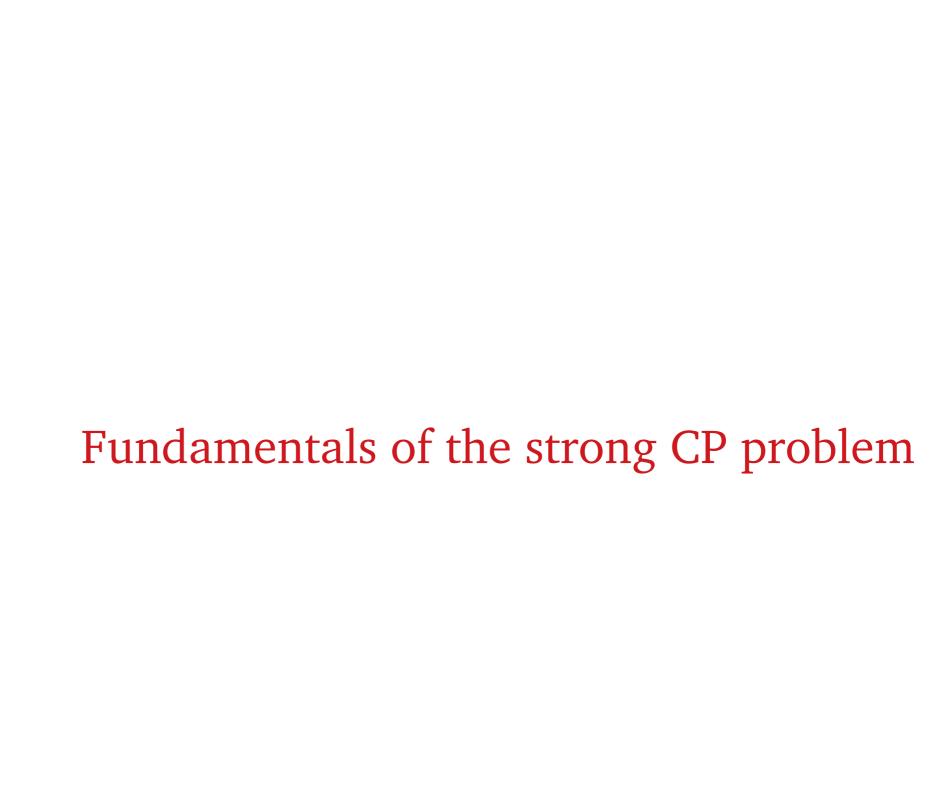
The results would imply that there is no need to tune θ to explain the absence of CP violation in the strong interactions

No conflict with a massive η' and with nonzero estimates of the topological susceptibility in the lattice

The plan:

Fundamentals of the strong CP problem

Fermion correlators from cluster decomposition and the index theorem



The QCD angle from the Lagrangian

$$S_{\text{QCD}} = \int d^4x \left[-\frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu} + \frac{g^2 \theta}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma} + \sum_{i=1}^{N_f} \overline{\psi}_i \left(i \gamma^{\mu} D_{\mu} - m_i e^{i\alpha_i \gamma_5} \right) \psi_i \right].$$

 θ -term is a total derivative and thus corresponds to a boundary term

Boundary terms never contribute in perturbation theory:

effects of θ are nonperturbative

 S_{θ} is **CP-odd!**

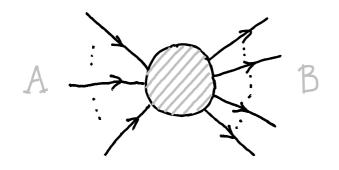
$$CP: A_0 \to -A_0, \quad A_i \to A_i \quad \Rightarrow \quad S_\theta \to -S_\theta$$

Yet no CP violation has been observed in the strong interactions: **Strong CP problem**

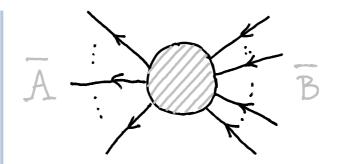
$$|d_n| < 1.8 \times 10^{-26} e \cdot cm$$
 [nEDM collaboration 2020]

What do we need for CP violation?

Need interfering contributions to amplitudes with misaligned phases



$$|\mathcal{M}_{A\to B}|^2 = |c_0\hat{\mathcal{M}}_0 + c_1\hat{M}_1|^2$$



$$|\mathcal{M}_{A\to B}|^2 = |c_0\hat{\mathcal{M}}_0 + c_1\hat{M}_1|^2 \qquad |\mathcal{M}_{\bar{B}\to \bar{A}}|^2 = |c_0^*\hat{\mathcal{M}}_0 + c_1^*\hat{M}_1|^2$$

$$|\mathcal{M}_{A\to B}|^2 - |\mathcal{M}_{\bar{B}\to\bar{A}}|^2 = 4\operatorname{Im}(c_0^*c_1)\operatorname{Im}(\mathcal{M}_0\mathcal{M}_1^*)$$

CP violation needs $\arg c_0 \neq \arg c_1$

Phases of perturbative contributions to correlators fixed by α_i

 θ will lead to \mathcal{CP} if it affects phases of nonperturbative contributions to correlators. Naively expected because $\exp(-S_{\rm QCD}^{\rm E}) \propto \exp(\mathrm{i}\Delta n\theta)$

Finite action constraints and topology

Euclidean path integral only receives contributions from **finite action saddles** and fluctuations about these

- In infinite spacetime, gauge fields at saddles must be pure gauge transf. at ∞
- Fields fall into homotopy classes with integer topological charge Δn

Atiyah-Singer's index theorem:

$$\Delta n = \#(\text{Right-handed zero modes of } D) - \#(\text{Left-handed zero modes of } D)$$

$$D\psi_{R} = 0$$

$$D\psi_{L} = 0$$

The θ -term is related to the topological charge! $-S_{\theta}^{E} = i\theta \Delta n$

The θ -term is only guaranteed to be \propto to an integer in an infinite spacetime

Is θ physical?

 θ cannot be physical as it changes under chiral field redefinitions due to anomaly:

$$\partial_{\mu} \langle \sum_{j} \bar{\psi}_{j} \gamma^{\mu} \gamma_{5} \psi_{j} \rangle = 2N_{F} \frac{g^{2}}{64\pi^{2}} \epsilon^{\mu\nu\rho\sigma} F^{a}_{\mu\nu} F^{a}_{\rho\sigma} + 2\sum_{j} \langle \bar{\psi} \gamma_{5} m_{j} e^{i\alpha_{j}\gamma_{5}} \psi \rangle$$

$$\frac{\psi \to e^{i\beta\gamma_5}\psi}{\bar{\psi} \to \bar{\psi}e^{i\beta\gamma_5}}$$

$$Z(\theta, \frac{\alpha_j}{\alpha_j}) \to Z(\theta - 2N_f\beta, \alpha_j + 2\beta)$$
 fermion mass phases

Spurion symmetry: *Z* invariant under chiral transformations plus "spurion" transf:

$$\theta \to \theta + 2N_f \beta, \quad \mathfrak{m}_j = m_j e^{i\alpha_j} \to e^{-2i\beta} \mathfrak{m}_j$$

A physical combination is

$$\bar{\theta} \equiv \theta + \alpha, \quad \alpha = \sum_{j} \arg(\mathfrak{m}_{j})$$

Strong CP problem:

$$\bar{\theta} < 10^{-10}$$

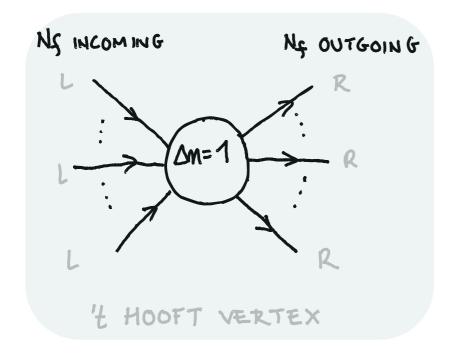
Nonperturbative effects in QCD

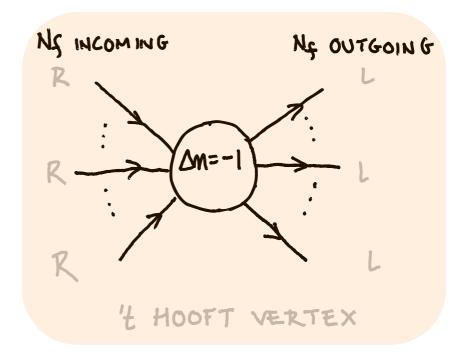
Integrating anomaly eq:

$$\Delta Q_5 = 2N_f \Delta n + \text{mass corrections}$$

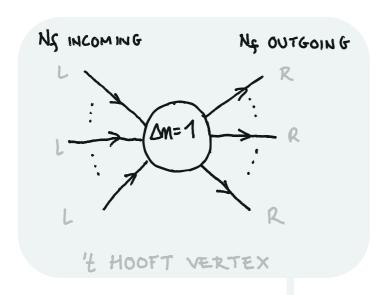
There are interactions that **violate chiral charge** by $2N_f\Delta n$ units

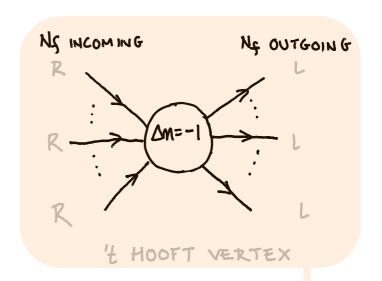
Can be recovered from nonperturbative contributions to the path integral around saddle points with nonzero Δn : instantons ['t Hooft]





Nonperturbative effects in QCD





Fermionic Green's functions in instanton backgrounds can be captured by **effective operators**

$$\mathcal{L}_{\text{eff}} \supset -\sum_{j} m_{j} \bar{\psi}_{j} (e^{-i\alpha_{j}} P_{L} + e^{i\alpha_{j}} P_{R}) \psi_{j} - \Gamma_{N_{f}} e^{i\xi} \prod_{j=1}^{N_{f}} (\bar{\psi}_{j} P_{L} \psi_{j}) - \Gamma_{N_{f}} e^{-i\xi} \prod_{j=1}^{N_{f}} (\bar{\psi}_{j} P_{R} \psi_{j})$$

2 options compatible with spurion chiral symmetry:

$$\xi = \theta$$
 CP violation (phases not aligned)
$$\xi = -\alpha$$
 No CP violation (all phases aligned, can be removed)

Phase ambiguity in the chiral Lagrangian

The **chiral Lagrangian** at lowest order has the form

$$\mathcal{L} = f_{\pi}^{2} \operatorname{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + a f_{\pi}^{3} \operatorname{Tr} M U + b f_{\pi}^{4} \det U + \text{h.c.}$$

Captures t' Hooft vertices $U \sim \bar{\psi} P_R \psi \sim e^{i\frac{\Pi^a \sigma^a}{\sqrt{2}f_{\pi}}}$

$$U \sim \bar{\psi} P_R \psi \sim e^{i\frac{\Pi^a \sigma^a}{\sqrt{2}f_\pi}}$$

There are again 2 options compatible with spurion chiral symmetry

$$b \propto e^{-i\theta}$$

$$b \propto e^{i\alpha} = e^{i\sum_j \arg(\mathfrak{m}_j)}$$

Usual option, assumed by [Baluni, Crewther et al] CP violation

No CP violation!

How to resolve the ambiguity?

Need to match effective `t Hooft vertices / chiral Lagrangian with QCD computations

Only real computation that we know of is `t Hooft's, using dilute instanton gas

We have recomputed Green's functions in the dilute instanton gas, in Euclidean and Minkowski spacetime, and found $\xi = -\alpha$ (no CP violation)

We also have a **computation which does not rely on instantons**, presented next

Fermion correlators from cluster decomposition and the index theorem

Strategy

The aim is to constrain the functional dependence of the partition functions $Z_{\Delta n}$ on VT, Δn , $\mathfrak{m}_j = m_j e^{\mathrm{i}\alpha_j}$

Fermion masses can be understood as **sources** for the integrated fermion correlators [Leutweyler & Smilga]

$$\mathcal{L} \supset -\sum_{j} \left(\bar{\psi}_{j} (\mathfrak{m}^{*} P_{L} + \mathfrak{m} P_{R}) \psi_{j} \right)$$

$$\int d^{4}x \, \langle \bar{\psi}_{i} P_{R} \psi_{i} \rangle_{\Delta n} = -\frac{\partial}{\partial \mathfrak{m}_{i}} Z_{\Delta n}, \int d^{4}x \, \langle \bar{\psi}_{i} P_{L} \psi_{i} \rangle_{\Delta n} = -\frac{\partial}{\partial \mathfrak{m}_{i}^{*}} Z_{\Delta n}.$$

These correlators should be sensitive to global CP-violating phases

Cluster decomposition

Using Lagrangian without the θ angle, one can write expectation values by **weighing** over path integrals over the different **topological classes**

4d volume

$$\langle \mathcal{O} \rangle_{\Omega} = \frac{\sum_{\Delta n = -\infty}^{\infty} f(\Delta n) \int_{\Delta n} \mathcal{D}\phi \,\mathcal{O} \,e^{-S_{\Omega}[\phi]}}{\sum_{\Delta n = -\infty}^{\infty} f(\Delta n) \int_{\Delta n} \mathcal{D}\phi \,e^{-S_{\Omega}[\phi]}}$$

For a **local operator** \mathcal{O}_1 with support in a spacetime volume Ω_1

$$\langle \mathcal{O}_1 \rangle_{\Omega} = \frac{\sum_{\Delta n_1 = -\infty}^{\infty} \sum_{\Delta n_2 = -\infty}^{\infty} f(\Delta n_1 + \Delta n_2) \int_{\Delta n_1} \mathcal{D}\phi \, \mathcal{O}_1 \, e^{-S_{\Omega_1}[\phi]} \int_{\Delta n_2} \mathcal{D}\phi \, e^{-S_{\Omega_2}[\phi]}}{\sum_{\Delta n_1 = -\infty}^{\infty} \sum_{\Delta n_2 = -\infty}^{\infty} f(\Delta n_1 + \Delta n_2) \int_{\Delta n_1} \mathcal{D}\phi \, e^{-S_{\Omega_1}[\phi]} \int_{\Delta n_2} \mathcal{D}\phi \, e^{-S_{\Omega_2}[\phi]}}$$

If physics is local, fluctuations in Ω_2 must factor away (cluster decomposition)

$$f(\Delta n_1 + \Delta n_2) = f(\Delta n_1) f(\Delta n_2) \Rightarrow f(\Delta n) = e^{i\Delta n\theta}$$

Usual θ term recovered! [Weinberg]

Taking the clustering argument further

The denominators in the previous slide one assumed factorization of path integral

$$Z(\Omega) = \sum_{\Delta n} e^{i\Delta n\theta} \tilde{Z}_{\Delta n}(\Omega)$$
$$\tilde{Z}_{\Delta n}(\Omega = \Omega_1 + \Omega_2) = \sum_{\Delta n_1 = -\infty}^{\infty} \tilde{Z}_{\Delta n_1}(\Omega_1) \tilde{Z}_{\Delta n - \Delta n_1}(\Omega_2)$$

Assume **complex phases in** $Z_{\Delta n}$ **fixed** as in one-loop determinants:

- phases of nonzero modes cancel (related by parity)
- global phase determined by fermion zero modes index theorem!

 $\#(\text{Right-handed zero modes of } D) - \#(\text{Left-handed zero modes of } D) = \Delta n$

$$\tilde{Z}_{\Delta n}(\Omega) = e^{i\Delta n\alpha} g_{\Delta n}(\Omega) \Rightarrow g_{\Delta n}(\Omega_1 + \Omega_2) = \sum_{\Delta n_1 = -\infty}^{\infty} g_{\Delta n_1}(\Omega_1) g_{\Delta n - \Delta n_1}(\Omega_2)$$
Real

Clustering revisited

Parity changes sign of Δn and α , so that

$$g_{\Delta n}(\Omega) = g_{-\Delta n}(\Omega)$$

Substituting $\Omega = 0$

$$g_{\Delta n}(0) = \sum_{\Delta n_1 = -\infty}^{\infty} g_{\Delta n_1}(0) g_{\Delta n - \Delta n_1}(0) \Rightarrow g_{\Delta n}(0) = \delta_{\Delta n,0}$$

The former motivates the **Ansatz**

$$g_{\Delta n}(\Omega) = \Omega^{|\Delta n|} f_{|\Delta n|}(\Omega^2), \quad f_{|\Delta n|}(0) \neq 0.$$

Assuming analiticity in Ω there is a unique solution with free parameter β !

$$f_{\Delta n}(\Omega) = I_{\Delta n}(2\beta\Omega)$$

$$Z_{\Delta n} = e^{i\Delta n(\theta + \alpha)} I_{\Delta n}(2\beta\Omega)$$

Mass dependence and correlation functions

As the $g_{\Delta n}$ are real:

$$Z_{\Delta n}(\Omega) = e^{i\Delta n(\theta + \alpha)} I_{\Delta n}(2\beta(\mathfrak{m}_k \mathfrak{m}_k^*) \Omega) =$$

$$= e^{i\Delta n(\theta - i/2 \sum_j \log(\mathfrak{m}_j/\mathfrak{m}_j^*))} I_{\Delta n}(2\beta(\mathfrak{m}_k \mathfrak{m}_k^*) \Omega)$$

Taking derivatives with respect to \mathfrak{m} , \mathfrak{m}^* gives averaged integrated correlators

Spurion chiral charge +2

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_R \psi_i \rangle_{\Delta n} = - \, e^{\mathrm{i} \Delta n (\theta + \bar{\alpha})} \left(- \frac{\beta}{2\mathfrak{m}_i} (I_{\Delta n + 1}(2\beta\Omega) - I_{\Delta n - 1}(2\beta\Omega)) \right.$$
Spurion chiral charge -2
$$+ \mathfrak{m}_i^* (I_{\Delta n + 1}(2\beta\Omega) + I_{\Delta n - 1}(2\beta\Omega)) \frac{\partial}{\partial (\mathfrak{m}_i \mathfrak{m}_i^*)} \, \beta(\mathfrak{m}_k \mathfrak{m}_k^*) \right)$$

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_L \psi_i \rangle_{\Delta n} = - \, e^{\mathrm{i} \Delta n (\theta + \bar{\alpha})} \left(\frac{\beta}{2\mathfrak{m}_i^*} (I_{\Delta n + 1}(2\beta\Omega) - I_{\Delta n - 1}(2\beta\Omega)) \right.$$

$$+ \mathfrak{m}_i (I_{\Delta n + 1}(2\beta\Omega) + I_{\Delta n - 1}(2\beta\Omega)) \frac{\partial}{\partial (\mathfrak{m}_i \mathfrak{m}_i^*)} \, \beta(\mathfrak{m}_k \mathfrak{m}_k^*) \right)$$

Summing over topological sectors

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_R \psi_i \rangle = \lim_{N \to \infty} \lim_{VT \to \infty} \frac{\sum_{\Delta n = -N}^{N} \frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_R \psi_i \rangle_{\Delta n}}{\sum_{\Delta m = -N}^{N} Z_{\Delta m}} = 2\mathfrak{m}_i^* \, \partial_{\mathfrak{m}_i \mathfrak{m}_i^*} \beta(\mathfrak{m}_k \mathfrak{m}_k^*),$$

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_L \psi_i \rangle = \lim_{N \to \infty} \lim_{VT \to \infty} \frac{\sum_{\Delta n = -N}^{N} \frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_L \psi_i \rangle_{\Delta n}}{\sum_{\Delta m = -N}^{N} Z_{\Delta m}} = 2\mathfrak{m}_i \, \partial_{\mathfrak{m}_i \mathfrak{m}_i^*} \beta(\mathfrak{m}_k \mathfrak{m}_k^*).$$

Topological classification only enforced in infinite volume, which fixes ordering

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i \psi_i \rangle = 2m_i e^{-i\alpha_i \gamma_5} \partial_{\mathfrak{m}_i \mathfrak{m}_i^*} \beta(\mathfrak{m}_k \mathfrak{m}_k^*)$$

Only a single phase: no CP violation

Result also valid for more general correlators. Opposite order of limits yields CP-violation

Conclusions

QCD with an arbitrary θ does not predict CP violation, as long as the sum over topological sectors is performed at **infinite volume**

This **ordering of limits** is the correct one because the topological classification is only enforced for an infinite volume

Further reading in our paper

- For local observables one can recover CP-conserving expectation values from path integrals in a finite subvolume without θ dependence
- No conflict with nonzero topological susceptibility in the lattice and η ' mass

Thank you!

Additional material

The η ' mass

Chiral Lagrangian with alignment in the phases of mass terms and anomalous terms still predicts a nonzero value of the η ' mass

$$\mathcal{L} = f_{\pi}^{2} \operatorname{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + a f_{\pi}^{3} \operatorname{Tr} M U + |b| e^{\operatorname{iarg det } M} f_{\pi}^{4} \operatorname{det} U + \text{h.c.}$$

$$m_{\eta'}^2 = 8|b|f_{\pi}^2$$

Can be seen to be **proportional** to the **topological susceptibility** over **finite volumes** of the **pure gauge theory**, in line with [Witten, Di Vecchia & Veneziano]

Classic arguments linking topological susceptibility to CP violation ([Shifman et al]) rely on analytic expansions in θ which don't apply with our limiting procedure

Z becomes non-analytic in θ . This possibility has been mentioned by [Witten]

Partition function and analyticity

Usual partition function is analytic in θ

$$Z_{\text{usual}} = \lim_{VT \to \infty} \lim_{\substack{N \to \infty \\ N \in N}} \sum_{\Delta n = -N}^{N} Z_{\Delta n} = e^{2i\kappa_{N_f} VT \cos(\bar{\alpha} + \theta + N_f \pi)}$$

 θ -dependence of observables (giving CP violation) is usually obtained by expanding action inside path integral in powers of θ . E.g.

$$\frac{\langle \Delta n \rangle}{\Omega} = i \left(\theta - \theta_0 \right) \left| \frac{\langle \Delta n^2 \rangle}{\Omega} \right|_{\theta_0} + \mathcal{O}(\theta - \theta_0)^2$$

topological susceptibility

[Shifman et al]

In our limiting procedure the former is not valid, as Z becomes nonanalytic in θ

$$Z = \lim_{\substack{N \to \infty \\ N \in N}} \lim_{VT \to \infty} \sum_{\Delta n = -N}^{N} Z_{\Delta n} = I_0(2i\kappa_{N_f}VT) \lim_{\substack{N \to \infty \\ N \in N}} \sum_{|\Delta n| \le N} e^{i\Delta n(\bar{\alpha} + \theta + N_f\pi)}$$

 θ drops out from observables, there is no CP violation

Finite volumes in an infinite spacetime

Even in an infinite spacetime, we can express expectation values of local observables in terms over **path integration over finite volume**.

This can help make contact with lattice computations

Assume local operator \mathcal{O}_1 with support in finite spacetime volume Ω_1

$$\langle \mathcal{O}_1 \rangle_{\Omega} = \frac{\sum_{\Delta n = -\infty}^{\infty} f(\Delta n) \int_{\Delta n} \mathcal{D}\phi \, \mathcal{O}_1 \, e^{-S_{\Omega}[\phi]}}{\sum_{\Delta n = -\infty}^{\infty} f(\Delta n) \int_{\Delta n} \mathcal{D}\phi \, e^{-S_{\Omega}[\phi]}}$$

$$= \frac{\sum_{\Delta n = -\infty}^{\infty} \sum_{\Delta n_1 = -\infty}^{\infty} f(\Delta n) \int_{\Delta n_1} \mathcal{D}\phi \,\mathcal{O}_1 \,e^{-S_{\Omega_1}[\phi]} \int_{\Delta n_2 = \Delta n - \Delta n_1} \mathcal{D}\phi \,e^{-S_{\Omega_2}[\phi]}}{\sum_{\Delta n = -\infty}^{\infty} \sum_{\Delta n_1 = -\infty}^{\infty} f(\Delta n) \int_{\Delta n_1} \mathcal{D}\phi \,e^{-S_{\Omega_1}[\phi]} \int_{\Delta n_2 = \Delta n - \Delta n_1} \mathcal{D}\phi \,e^{-S_{\Omega_2}[\phi]}}.$$

Finite volumes in an infinite spacetime

Path integrations over Ω_2 give just the **partition functions** we calculated before

$$\langle \mathcal{O}_{1} \rangle_{\Omega} = \lim_{N \to \infty} \lim_{\Omega_{2} \to \infty} \times \frac{\sum_{N=-N}^{N} \sum_{\Delta n_{1}=-\infty}^{\infty} f(\Delta n) I_{\Delta n-\Delta n_{1}} (2\kappa\Omega_{2}) (-1)^{N_{f}(\Delta n-\Delta n_{1}) i \alpha(\Delta n-\Delta n_{1})} \int_{\Delta n_{1}} \mathcal{D}\phi \, \mathcal{O}_{1} \, e^{-S_{\Omega_{1}}[\phi]}}{\sum_{\Delta n_{2}=-N}^{N} \sum_{\Delta n_{1}=-\infty}^{\infty} f(\Delta n) I_{\Delta n-\Delta n_{1}} (2\kappa\Omega_{2}) (-1)^{N_{f}(\Delta n-\Delta n_{1}) i \alpha(\Delta n-\Delta n_{1})} \int_{\Delta n_{1}} \mathcal{D}\phi \, e^{-S_{\Omega_{1}}[\phi]}} \mathcal{D}\phi \, e^{-S_{\Omega_{1}}[\phi]}$$

In the **infinite volume** limit the **Bessel functions tend to common value** and dependence on Δn factorizes out and cancels:

$$\langle \mathcal{O}_1 \rangle_{\Omega} = \frac{\sum_{\Delta n_1 = -\infty}^{\infty} \int_{\Delta n_1} \mathcal{D}\phi (-1)^{-N_f \Delta n_1} e^{-i \alpha \Delta n_1} \mathcal{O}_1 e^{-S_{\Omega_1}[\phi]}}{\sum_{\Delta n_1 = -\infty}^{\infty} \int_{\Delta n_1} \mathcal{D}\phi (-1)^{-N_f \Delta n_1} e^{-i \alpha \Delta n_1} e^{-S_{\Omega_1}[\phi]}}.$$

Finite volumes in an infinite spacetime

$$\langle \mathcal{O}_1 \rangle_{\Omega} = \frac{\sum_{\Delta n_1 = -\infty}^{\infty} \int_{\Delta n_1} \mathcal{D}\phi (-1)^{-N_f \Delta n_1} e^{-i \alpha \Delta n_1} \mathcal{O}_1 e^{-S_{\Omega_1}[\phi]}}{\sum_{\Delta n_1 = -\infty}^{\infty} \int_{\Delta n_1} \mathcal{D}\phi (-1)^{-N_f \Delta n_1} e^{-i \alpha \Delta n_1} e^{-S_{\Omega_1}[\phi]}}.$$

We recover a path integration over a finite volume, without θ dependence

Extra phases precisely cancel those from fermion determinants in Ω_1

This removes interferences between different topological sectors: no CP violation