

High Energy Theory Group Department of Physics National Technical University of Athens

Probing Unified Theories with Reduced Couplings at Future Colliders

Gregory Patellis

S. Heinemeyer, J. Kalinowski, W. Kotlarski, M. Mondragón, GP, N. Tracas, G. Zoupanos arXiv:2011.07900 (hep-ph)

29 July 2021

The ad hoc Yukawa and Higgs sectors of the Standard Model induce ~ 20 free parameters. How can they be related to the gauge sector in a more fundamental level?

The straightforward way to induce relations among parameters is to add more symmetries.

ightarrow i.e. GUTs.

Another approach is to look for renormalization group invariant (RGI) relations among couplings at the GUT scale that hold up to the Planck scale.

ightarrow less free parameters ightarrow more predictive theories

- Theoretical Basis

Reduction of Couplings

About dimensionless couplings:

Any RGI expression among couplings $\mathcal{F}(g,g_1,...,g_N)=0$ must satisfy the pde

$$\mu \frac{d\mathcal{F}}{d\mu} = \beta_g \frac{\partial \mathcal{F}}{\partial g} + \sum_{\alpha=1}^{N} \beta_\alpha \frac{\partial \mathcal{F}}{\partial g_\alpha} = 0$$

There are N independent $\mathcal{F}s$ and finding them is equivalent to solve the ode

$$\beta_g \left(\frac{dg_a}{dg} \right) = \beta_a, \qquad a = 1, ..., N$$

where g is the primary coupling \rightarrow Reduction Equations (REs).

Zimmermann (1985)

Ansatz: power series solutions to the REs (preserve perturb. renormalizability):

$$g_a = \sum_n \rho_a^{(n)} g^{2n+1}$$

Examining in 1-loop is sufficient for uniqueness to all loops.

Oehme, Sibold, Zimmermann (1984); (1985) 3/17

— Theoretical Basis

Finiteness

 $SM \rightarrow$ quadratic divergences $SUSY \rightarrow$ only logarithmic divergences Finite theories \rightarrow no divergences

For a chiral, anomaly free, N = 1 theory the superpotential is:

$$W=rac{1}{2}m^{ij}\Phi_i\Phi_j+rac{1}{6}C^{ijk}\Phi_i\Phi_j\Phi_k$$

N=1 non-renormalization theorem ightarrow only wave-function infinities.

The 1-loop gauge β -functions are given by

$$\beta_{g}^{(1)} = \frac{g^{3}}{16\pi^{2}} \left[\sum_{i} T(R_{i}) - 3C_{2}(G)\right]$$

The Yukawa β -functions are related to the anomalous dimensions of the matter fields:

$$eta_{jjk}^{(1)} = C_{ijl}\gamma_k^l + C_{ikl}\gamma_j^l + C_{jkl}\gamma_i^l \qquad \gamma_j^{l(1)} = rac{1}{32\pi^2} \left[C^{ikl}C_{jkl} - 3g^2C_2(R)\delta_j^l
ight]$$

- Theoretical Basis

Finiteness

1-loop β -functions vanish if the 1-loop gauge β -functions and the anomalous dimensions of all superfields vanish, imposing the conditions:

$$\sum_{i} T(R_i) = 3C_2(G) \ , \qquad C_{ikl}C^{ikl} = 2\delta_j^i g^2 C_2(R_i)$$

- ightarrow Gauge-Yukawa Unification (GYU)
- \rightarrow 1-loop finiteness is sufficient for 2-loop finiteness

Parkes, West (1984)

- 2-loop corrections for matter fields vanish if 1-loop finite \rightarrow sufficient for $\beta_{\rm g}^{(2)}=0=\beta_{\rm jk}^{(2)}$
- $C_2[U(1)] = 0 \rightarrow$ finiteness cannot be achieved in the MSSM \rightarrow GUT
- $C_2[singlet] = 0 \rightarrow$ supersymmetry can be broken only softly.

All-loop Finiteness

Theorem

Lucchesi, Piguet, Sibold (1988)

 $\beta_{a}^{(1)} = 0$

 $\gamma_{i}^{i(1)} = 0$

Consider an N=1 supersymmetric Yang-Mills theory with simple gauge group. If:

- There is no gauge anomaly
- 2 The gauge β -function vanishes at 1-loop
- Il superfield anomalous dimensions vanish at 1-loop
- The REs admit uniquely determined power series solution that in lowest order is a solution of the vanishing anomalous dimensions

 $-C_{ijk}=\rho_{ijk}g$

- these solutions are isolated and non-degenerate when considered as solutions of vanishing one-loop Yukawa β -functions

Then the associated Yang-Mills models depend on the single coupling constant g with a β -function which vanishes at all orders.

— Theoretical Basis

Soft supersymmetry breaking terms

The soft supersymmetry breaking sector introduces > 100 new free parameters.

Reduction can be extended to the dimensionful sector.

Kubo, Mondragon, Zoupanos (1996)

Jones, Mezincescu, Yao (1984)

 \rightarrow Consider a N = 1 supersymmetric gauge theory with soft terms:

$$-\mathcal{L}_{SSB}=rac{1}{6}h^{jk}\phi_i\phi_j\phi_k+rac{1}{2}b^{ij}\phi_i\phi_j+rac{1}{2}(m^2)^j_i\phi^{*i}\phi_j+rac{1}{2}M\lambda\lambda+ ext{h.c.}$$

1-loop finiteness can be achieved if we demand:

- $\beta_g^{(1)} = 0 = \gamma_j^{i(1)}$
- $h^{ijk} = -MC^{ijk}$
- $(m^2)_i^j = \frac{1}{3}MM^*\delta_i^j$
 - charge and colour breaking vacua
 - incompatible with radiative EW breaking
- $ightarrow \left(m_i^2 + m_j^2 + m_k^2
 ight) = MM^{\dagger} (1 + \Delta^{(2)} rac{g^2}{16\pi^2})$

Kobayashi, Kubo, Mondragon, Zoupanos (1998) (2-loop, can be upgraded to all-loop)

ightarrow also sufficient for 2-loop finiteness.

Jack, Jones (1994)

ightarrow Possible to upgrade the soft sector to all-loop finite!

Hisano, Shifman (1997); Kazakov (1999); Jack, Jones, Pickering (1998) Kobayashi, Kubo, Zoupanos (1998); Kobayashi, Kubo, Mondragon, Zoupanos (2000)

7/17

The All-loop Finite N = 1 SU(5) Model

1+2-loop finite	Hamidi, Schwarz; Jones, Raby (1984); Leon, Perez-Mercader, Quiros (1985)
all-loop finite	Kapetanakis, Mondragon, Zoupanos (1993)
 3 (5 + 10) 	ightarrow quarks - leptons
• 24	ightarrow GUT breaking
• 4 $(5+\overline{5}) \equiv H_i + \overline{H}_i$	ightarrow Higgs (no fast proton decay)
	Heinemeyer, Mondragon, Zoupanos (2008)

In order for the model to be predictive, it should also have the properties:

- One-loop anomalous dimensions are diagonal, i.e. $\gamma_i^{(1)j} \sim \delta_i^j$
- Fermions do not couple to the adjoint rep 24
- The two Higgs doublets of the MSSM are mostly made out of a pair of Higgs $(5+\bar{5})$ which couple to the third generation

The superpotential with an enhanced symmetry due to RoC:

$$W = \sum_{i=1}^{3} \left[\frac{1}{2} g_{i}^{u} 10_{i} 10_{i} H_{i} + g_{i}^{d} 10_{i} \overline{5}_{i} \overline{H}_{i} \right] + g_{23}^{u} 10_{2} 10_{3} H_{4}$$

$$+ g_{23}^{d} \, 10_{2} \overline{5}_{3} \, \overline{H}_{4} + g_{32}^{d} \, 10_{3} \overline{5}_{2} \, \overline{H}_{4} + g_{2}^{f} \, H_{2} \, 24 \, \overline{H}_{2} + g_{3}^{f} \, H_{3} \, 24 \, \overline{H}_{3} + \frac{g}{3} \, (24)^{3}$$

8/17

The isolated and non-degenerate solutions to $\gamma_i^{(1)} = 0$ give:

$$(g_1^{u})^2 = \frac{8}{5} g^2 , \ (g_1^{d})^2 = \frac{6}{5} g^2 , \ (g_2^{u})^2 = (g_3^{u})^2 = \frac{4}{5} g^2 ,$$

$$(g_2^{d})^2 = (g_3^{d})^2 = \frac{3}{5} g^2 , \ (g_{23}^{u})^2 = \frac{4}{5} g^2 , \ (g_{23}^{d})^2 = (g_{32}^{d})^2 = \frac{3}{5} g^2 ,$$

$$(g^{\lambda})^2 = \frac{15}{7} g^2 , \ (g_2^{t})^2 = (g_3^{t})^2 = \frac{1}{2} g^2 , \ (g_1^{t})^2 = 0 , \ (g_4^{t})^2 = 0$$

From the dimensionful sector we obtain:

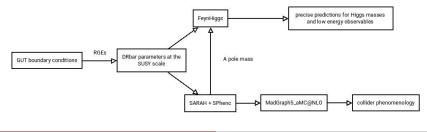
$$h = -MC$$

$$m_{H_d}^2 + 2m_{10}^2 = M^2$$

$$m_{H_d}^2 - 2m_{10}^2 = -\frac{M^2}{3}$$

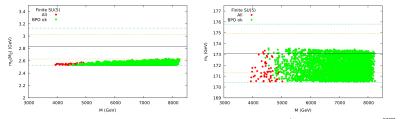
$$m_{\overline{5}}^2 + 3m_{10}^2 = \frac{4M^2}{3}$$

Independent parameters:

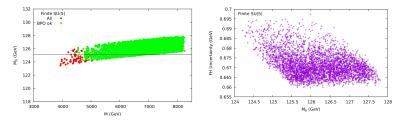

– Dimensionless: g

- Dimensionful: M, m₁₀

Computational Setup


Heinemeyer, Mondragon, GP, Tracas, Zoupanos (2018), (2020); Heinemeyer, Kalinowski, Kotlarski, Mondragon, GP, Tracas, Zoupanos (2020)

- Broken GUT \rightarrow MSSM \rightarrow REs' solutions act as boundary conditions at M_{GUT}
- 1-loop β -functions for the soft sector, everything else in 2 loops
- $\mu <$ 0 only acceptable choice because of quark masses
- $m_{ au}$ is used as input



10/17

3rd generation analysis:

Points in green satisfy $b \to s\gamma$, $B_u \to \tau \nu$, $B_s \to \mu^+ \mu^-$ and $\Delta M_{B_s}^{exp}$

FeynHiggs 2.16.0 ightarrow uncertainty lowered by more than \sim 1 GeV

11/17

Gregory Patellis Probing Unified Theories with Reduced Couplings at Future Colliders

	$tan\beta$	M _{A,H}	$M_{H^{\pm}}$	M _ĝ	$M_{\tilde{\chi}_1^0}$	$M_{\tilde{\chi}^0_2}$	$M_{\tilde{\chi}^0_3}$	$M_{\tilde{\chi}_4^0}$	$M_{\tilde{\chi}_1^{\pm}}$	$M_{\tilde{\chi}_2^{\pm}}$
FUTSU5-1	49.9	5.688	5.688	8.966	2.103	3.917	4.829	4.832	3.917	4.833
FUTSU5-2	50.1	7.039	7.086	10.380	2.476	4.592	5.515	5.518	4.592	5.519
FUTSU5-3	49.9	16.382	16.401	12.210	2.972	5.484	6.688	6.691	5.484	6.691
	M _{ẽ1,2}	$M_{\tilde{\nu}_{1,2}}$	Μ _{τ̃}	$M_{\tilde{\nu}_{\tau}}$	$M_{\tilde{d}_{1,2}}$	M _{ũ1,2}	М _{õ1}	M _{Ď2}	M _{ī1}	M _{it2}
FUTSU5-1	3.102	3.907	2.205	3.137	7.839	7.888	6.102	6.817	6.099	6.821
FUTSU5-2	3.623	4.566	2.517	3.768	9.059	9.119	7.113	7.877	7.032	7.881
FUTSU5-3	4.334	5.418	3.426	3.834	10.635	10.699	8.000	9.387	8.401	9.390

scenarios	FUTSU5-1	FUTSU5-2	FUTSU5-3	scenarios	FUTSU5-1	FUTSU5-2	FUTSU5-3
\sqrt{s}	100 TeV	100 TeV	100 TeV	\sqrt{s}	100 TeV	100 TeV	100 TeV
$ ilde{\chi}_2^0 ilde{\chi}_1^+$	0.17	0.08	0.03	$\tilde{u}_l \tilde{\chi}_1^-, \tilde{d}_l \tilde{\chi}_1^+ + h.c.$	0.15	0.06	0.02
ĝĝ	0.20	0.05	0.01	Hbb	2.76	0.85	
$\tilde{q}_i \tilde{q}_j, \tilde{q}_i \tilde{q}_j^*$	3.70	1.51	0.53	Abb	2.73	0.84	
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	0.10	0.05	0.02	$H^+b\overline{t}+h.c.$	1.32	0.42	
ẽ₁ẽ _i *	0.23	0.13	0.05	H^+W^-	0.38	0.12	
ą̃iĝ, ģ́i [*] ĝ	2.26	0.75	0.20				

• No discovery at the HL-LHC

- Heavy Higgs masses (FUTSU5-1 and FUTSU5-2) accessible at the FCC-hh
- Lighter stop mass of FUTSU5-1 accessible at the FCC-hh (no 5σ)

2-loop Finite $N = 1 SU(3)^3$

Ma, Mondragon, Zoupanos (2004)

 $\begin{array}{ll} 1\text{-loop}: & \beta_{i} = \left(16\pi^{2}\right)^{-1}\alpha_{i}g_{i}^{3}, & \alpha_{i} = 3n_{G} - 9, & n_{G}: \text{\#of fermion gens} \\ q^{c} = \left(\begin{array}{cc} d_{p}^{c^{1}} & u_{p}^{c^{1}} & D_{p}^{c^{1}} \\ d_{p}^{c^{2}} & u_{p}^{c^{2}} & D_{p}^{c^{2}} \\ d_{p}^{c^{3}} & u_{p}^{c^{3}} & D_{p}^{c^{3}} \end{array}\right), & Q = \left(\begin{array}{cc} -d_{l}^{1} & -d_{l}^{2} & -d_{l}^{3} \\ u_{l}^{1} & u_{l}^{2} & u_{l}^{3} \\ u_{l}^{1} & u_{l}^{2} & u_{l}^{3} \end{array}\right), & L = \left(\begin{array}{cc} H_{0}^{d} & H_{u}^{+} & \nu_{l} \\ H_{d}^{-} & H_{u}^{0} & e_{l} \\ u_{c}^{c} & qc^{c} & S \end{array}\right) \end{array}$

Two trilinear invariants for the superpotential (only third gen considered):

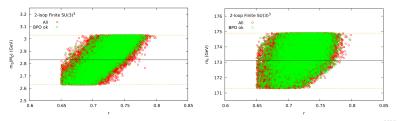
$$f \operatorname{Tr}(Lq^{c}Q) + \frac{1}{6}f' \epsilon_{ijk}\epsilon_{abc}(L_{ia}L_{jb}L_{kc} + q^{c}_{ia}q^{c}_{jb}q^{c}_{kc} + Q_{ia}Q_{jb}Q_{kc})$$

After the vanishing of anomalous dimensions is imposed:

$$|f|^2 + \frac{2}{3}|f'|^2 = \frac{16}{9}g^2$$

– Isolated and non-degenerate solution $ightarrow |f|^2 = rac{16}{9}g^2$

All-loop finite No lepton masses


- Unique (but no isolated) solution
$$\rightarrow |f|^2 = r \frac{16}{9}g^2$$

 $|f'|^2 = (1-r)\frac{8}{3}g^2$ 2-loop finite

Dimensionful:

13/17

h = -Mf $m_{H_{e}}^2 + m_{\tilde{t}e}^2 + m_{\tilde{a}}^2 = M^2 = m_{H_{e}}^2 + m_{\tilde{t}e}^2 + m_{\tilde{a}e}^2$

Intermediate scales: $10^{13} \& 10^{14}$ GeV \rightarrow contributions from exotic particles

Points in green satisfy $b \to s\gamma$, $B_u \to \tau\nu$, $B_s \to \mu^+\mu^-$ and $\Delta M_{B_s}^{exp}$

FeynHiggs 2.16.0 ightarrow uncertainty lowered by more than \sim 1 GeV

14/17

Gregory Patellis Probing Unified Theories with Reduced Couplings at Future Colliders

	$tan\beta$	M _{A,H}	$M_{H\pm}$	M _ĝ	$M_{\tilde{\chi}_1^0}$	$M_{\tilde{\chi}_2^0}$	$M_{\tilde{\chi}^0_3}$	$M_{\tilde{\chi}_4^0}$	$M_{\tilde{\chi}_1^{\pm}}$	$M_{\tilde{\chi}_2^{\pm}}$
FSU33-1	46.2	7.029	7.028	6.526	1.506	2.840	6.108	6.109	2.839	6.109
FSU33-2	45.5	6.484	6.431	8.561	2.041	3.817	7.092	7.093	3.817	7.093
FSU33-3	49.7	6.539	6.590	10.159	2.473	4.598	6.780	6.781	4.598	6.781
	M _{ẽ1,2}	$M_{\tilde{\nu}_{1,2}}$	Μ _{τ̃}	$M_{\tilde{\nu}_{\tau}}$	$M_{\tilde{d}_{1,2}}$	<i>M</i> _{ũ1,2}	M _{õ1}	M _{b2}	M _{ĩ1}	M _i
FSU33-1	2.416	2.415	1.578	2.414	5.375	5.411	4.913	5.375	4.912	5.411
FSU33-2	3.188	3.187	2.269	3.186	7.026	7.029	6.006	7.026	6.005	7.029
FSU33-3	3.883	3.882	2.540	3.882	8.334	8.397	7.227	8.334	7.214	7.409

scenarios	FSU33-1	FSU33-2	FSU33-3	scenarios	FSU33-1	FSU33-2	FSU33-3
\sqrt{s}	100 TeV	100 TeV	100 TeV	\sqrt{s}	100 TeV	100 TeV	100 TeV
$ ilde{\chi}_2^0 ilde{\chi}_1^+$	0.58	0.16	0.07	$\tilde{ u}_i \tilde{ u}_j^*$	0.10	0.03	0.01
ĝĝ	2.61	0.30	0.07	$\tilde{u}_i \tilde{\chi}_1^-, \tilde{d}_i \tilde{\chi}_1^+ + h.c.$	1.22	0.25	0.08
$ ilde{g} ilde{\chi}_1^0$	0.20	0.05	0.02	$ ilde{q}_i ilde{\chi}_1^0, ilde{q}_i^* ilde{\chi}_1^0$	0.55	0.13	0.05
$\tilde{g}\tilde{\chi}_{2}^{0}$	0.20	0.04	0.01	$ ilde{q}_{l} ilde{\chi}_{2}^{0}, ilde{q}_{l}^{*} ilde{\chi}_{2}^{0}$	0.60	0.13	0.04
$\tilde{g}\tilde{\chi}_1^+$	0.42	0.09	0.03	$\tilde{\nu}_i \tilde{\Theta}_i^*, \tilde{\nu}_i^* \tilde{\Theta}_j$	0.36	0.12	0.04
$\tilde{q}_i \tilde{q}_j, \tilde{q}_i \tilde{q}_j^*$	25.09	6.09	2.25	́НЬБ	0.71	1.23	1.19
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	0.37	0.10	0.04	Abb	0.72	1.23	1.18
õ _l õ _j *	0.39	0.12	0.06	$H^+b\overline{t}+h.c.$	0.37	0.75	0.58
ą̃iĝ, ą̃i [∗] ĝ	22.12	3.71	1.05	H^+W^-	0.10	0.25	0.19

- No discovery at the HL-LHC
- Heavy Higgs masses of all benchmarks accessible at the FCC-hh
- Stop masses of all benchmarks accessible at the FCC-hh (no 5σ)

- Summary

Summary

- Reduction of Couplings: powerful tool that implies Gauge-Yukawa Unification
- Finiteness: old dream of HEP, very predictive models
- \bullet completely finite theories \rightarrow both in dimensionless and dimensionful sector
- Reduced models re-examined in 2-loop (1-loop for the SSB sector)
- $\mu < 0$ survives phenomenological constraints
- Both models agree with all LHC measurements
- The models elude discovery at HL-LHC part of their spectra could be observed at the FCC-hh

____ Thank You

Thank you for your attention!