Measurement of the Z boson production in association with at least two b jets in pp collisions at $\sqrt{s} = 13$ TeV with CMS

Hsin-Wei Hsia For the CMS Collaboration

Introduction

- The Z boson production associated with jets from b quarks provides important tests to perturbative quantum chromodynamics calculations.
- It is also the major background for many physics processes, including Higgs boson production in association with a Z, $ZH(H \rightarrow b\overline{b} / c\overline{c})$, and searches for new physics phenomena.

Examples of Feynman diagrams of Z+2b production

Overview of the measurement [1]

- The cross section is measured in the leptonic decay channel of Z bosons (Z $\rightarrow ee$ or Z $\rightarrow \mu\mu$) with full Run 2 data (137 pb⁻¹).
- Data collected with a single lepton trigger
- Leptons: leading (sub-leading) lepton $p_{\rm T}$ > 35 GeV (25 GeV), $|\eta|$ <2.4, isolated.
- Z boson: pair of oppositely charged leptons within Z mass window 71 GeV < M_{ll} < 111 GeV.
- Jets: anti- k_T jets, $p_T > 30$ GeV, $|\eta| < 2.4$. jets from pileup events are excluded.

- Missing transverse momentum < 50 GeV \rightarrow to reduce tt background
- b jets: tight tagging requirement (50% b quark tagging efficiency with 0.1% misidentification rate for jets originating from gluons or u, d, s quarks) \rightarrow to reduce DY + X backgrounds,
- - X =light or c jets (jets originated from c quarks).

Unfolding

b jets are tagged based on unique properties of B hadrons inside the jets: relatively long lifetime (~1.5 ps) \rightarrow secondary vertex displaced from the primary vertex and large invariant mass [2].

• The observed distributions at reconstruction level **y** are unfolded to particle level ones **X** by applying corrections for the detector effects represented by response matrix A [3].

Department of Physics

hsinweih@buffalo.edu

Integrated cross section for $Z + \ge 2$ b jets in combined channel

Unfolded differential cross section distributions

Summary

References

[1] The CMS Collaboration, "Measurement of Z+b jets cross section in proton-proton collisions at \sqrt{s} = 13 TeV", PAS SMP-20-015 (2021) [2] CMS Collaboration, "Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV", JINST 13 (2018) P05011 [3] S. Schmitt, "TUnfold: an algorithm for correcting migration effects in high energy physics", JINST 7 (2012) T10003

Measured	$0.65 \pm 0.03 \text{ (stat)} \pm 0.07 \text{ (syst)} \pm 0.02 \text{ (theo) pb}$
AC (LO) (NNPDF 3.1, CP5)	0.71 pb
(LO) (NNPDF 3.0, CUEPT8M1)	0.63 pb
C (NLO) (NNPDF 3.1, CP5)	$0.77\pm0.07~\mathrm{pb}$
(NLO) (NNPDF 3.0, CUEPT8M1)	$0.90 \pm 0.09 \text{ pb}$
SHERPA	0.84 pb

• Uncertainties in the jet and missing transverse momentum measurements as well as b jet tagging contribute significantly to the systematic uncertainty.

 Measured integrated cross section is in good agreement with MADGRAPH5_aMC@NLO (MG5_aMC) simulations calculated at LO.

• MG5 aMC at NLO and SHERPA predictions overestimate the measured cross section values.

• MG5_aMC LO predicted rates agree better with data, while MG5_aMC NLO and SHERPA overestimate the data rate. • In differential cross sections, the shape of data distributions are well described by MG5_aMC at NLO and SHERPA.

MG5_aMC (LO, NNPDF 3.1, CP5) MG5 aMC (LO, NNPDF 3.0, CUETP8N Theoretical syst unc