Possible indications for new Higgs bosons in the reach of the LHC: N2HDM and NMSSM interpretations

Thomas Biekötter

in collaboration with Alexander Grohsjean, Sven Heinemeyer, Christian Schwanenberger and Georg Weiglein

EPS-HEP 2021, Hamburg, Germany

July 26th 2021

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Introduction Collider excesses N2HDM interpretation NMSSM interpretation Conclusion

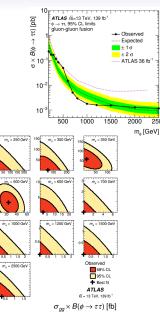
New physics at the LHC?

Nat. hist. Museum Rotterdamm

Theory: Susy, inflation, baryogenesis, ...

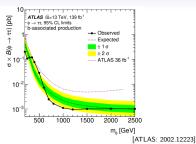
- ⇒ Non-minimal scalar sectors
- ⇒ Presence of more than one Higgs boson

Colliders: Excesses at $\sim 3(2)\sigma$ locally(globally)


- \Rightarrow Are the excesses consistent with each other?
- ⇒ Can they have a common origin?
- \Rightarrow 10 times more LHC data "around the corner"

Two concrete model realizations: Higgs bosons at 400 GeV and 96 GeV in the N2HDM and the NMSSM

"The $au^+ au^-$ excess" at \sim 400 GeV



m. = 200 GeV

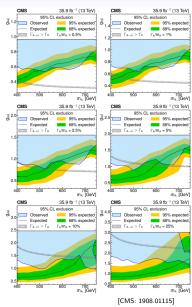
m. = 400 GeV

m, = 2000 GeV

 \tilde{B}

Local excess of 3σ at \sim 400 GeV Global significance below 2σ

Here:
$$\chi^2_{\tau^+\tau^-}(\sigma_{gg} \times B_{\phi \to \tau^+\tau^-}, \sigma_{bb} \times B_{\phi \to \tau^+\tau^-})$$
 for $m_{\phi} = 400~{\rm GeV}$


Both prodution modes relevant: $\Rightarrow \sigma_{bb} \sim 2\sigma_{gg}$

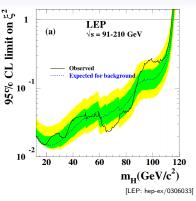
No excess in CMS analyses, but only $35.9 \mathrm{fb}^{-1}$

[CMS: 1803.06553]

troduction Collider excesses N2HDM interpretation NMSSM interpretation Conclusion

"The t ar t excess" at \sim 400 GeV

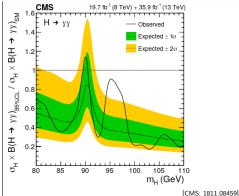
[CMS: 1908.01115]


Local excess of $\gtrsim 3\sigma$ at $\sim 400~{\rm GeV}$ Global significance below 2σ

Consistent with a pseudoscalar Higgs boson at $\sim 400~{\rm GeV}$

Most significant for $\Gamma_A/m_A=4\%$ and $c_{At\bar{t}}\sim 1$, but also consistent with slightly different m_A and $\Gamma_A/m_A \rightarrow \chi^2_{r\bar{t}}(m_A,\Gamma_A/m_A,c_{At\bar{t}})$

Corresponding ATLAS limits only for $m_A > 500~{
m GeV}$ and only 8 ${
m TeV}$ data


"The 96GeV excesses" (LEP and CMS)

 $\sim 2\sigma$ local excess at 96 - 98GeV

Extracted signal strength:

$$\mu_{\rm LEP}\left({
m e^+e^-} o Zh o Zbar{b}
ight) = 0.117 \pm 0.057$$

[6.05. 1011.00 05.

Extracted signal strength:

 $\left| \mu_{
m CMS} \left(\mathsf{gg}
ightarrow \mathsf{h}
ightarrow \gamma \gamma
ight) = 0.6 \pm 0.2$

Run I/II data: Local excess of $\gtrsim 3\sigma$

 $ightarrow \chi^2_{96}(\mu_{\rm LEP},\mu_{\rm CMS})$ assuming no correlation between $\mu_{\rm LEP}$ and $\mu_{\rm CMS}$

Many model interpretations with common origin of both excesses, including N2HDM and NMSSM see [T.B. M. Chakraborti, S. Heinemeyer: 2003.05422] for a list models

roduction Collider excesses N2HDM interpretation NMSSM interpretation Conclusion

The Next-to 2 Higgs Doublet Model: N2HDM

N2HDM = 2HDM-I/II/III/IV
$$(\phi_1,\phi_2)$$
 + Real Scalar Singlet (ϕ_s) , \mathbb{Z}_2' : $\phi_s \to -\phi_s$ \mathbb{Z}_2' spontaeusly broken when $\langle \phi_s \rangle = v_s \neq 0 \ \Rightarrow \phi_{1,2,s}$ are mixed

Higgs sector

CP-even Higgs bosons $h_{1,2,3}$, pseudoscalar A, charged Higgs bosons H^{\pm}

1. Pseudoscalar A as the origin of the $t\bar{t}$ and the $\tau^+\tau^-$ excesses at \sim 400 GeV

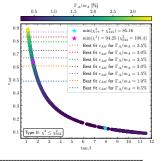
	Yukawa type	$ c_{At\bar{t}} $	$ c_{A auar{ au}} $	$ c_{Ab\bar{b}} $
$ aneta=rac{ extstyle v_1}{ extstyle v_2}$	I	$1/\tan\beta$	$1/\tan\beta$	$1/\tan\beta$
	II	$1/\tan \beta$	aneta	an eta
	III	$1/\tan \beta$	$\tan \beta$	$1/\tan \beta$
	IV	$1/\tan \beta$	$1/\tan\beta$	$\tan \beta$

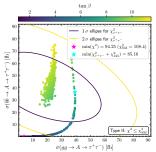
 $au^+ au^-$ can only be realized in type II In combination with $t\bar{t}$ excess?

2. Pseudoscalar A at 400 GeV and in addition a scalar h_1 at \sim 96 GeV?

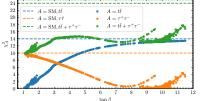
Type II and IV can realize the 96 GeV excesses
[T.B, M. Chakraborti, S. Heinemeyer: 1903.11661]

ightarrow Simultaneously also the $tar{t}$ or (and) the $au^+ au^-$ excess


Constraints: Vacuum stability, tree-level perturbative unitarity, collider searches, h_{125} signal rates, flavour physics observables, electroweak precision observables


A 400 ${ m GeV}$ pseudoscalar in the type II N2HDM

$$\chi^2=\chi^2_{125}+\chi^2_{t\bar{t}}+\chi^2_{\tau^+\tau^-}$$
 , we demand: $\chi^2\leq\chi^2_{\rm SM}$

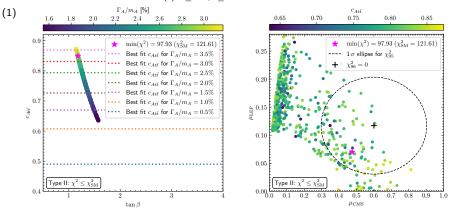

$$20 \; {\rm GeV} \, \leq m_{h_{2,C}} \, \leq 1000 \; {\rm GeV} \; , \quad m_{h_{b}} = 125.09 \; {\rm GeV} \; , \quad m_{A} = 400 \; {\rm GeV} \; ,$$

550 GeV
$$\leq m_{Ll}^{+} \leq 1000$$
 GeV , $10 \text{ GeV} \leq v_{S} \leq 1500 \text{ GeV}$, $0.5 \leq \tan \beta \leq 12.5$

(Also the "A o Zh" excess can be realized) o Appendix

Both the $t\bar{t}$ and the $\tau^+\tau^-$ excesses can be realized, but not simultaneously

$$aneta\lesssim 2.5$$
 for $t\overline{t}$ excess $aneta\gtrsim 5.5$ for $au^+ au^-$ excess


A 400 ${ m GeV}$ pseudoscalar and a 96 ${ m GeV}$ scalar in the type II N2HDM

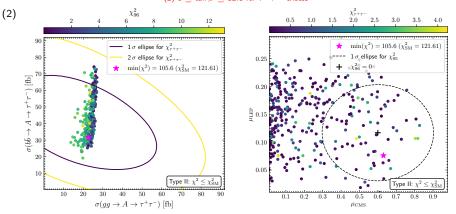
$$\chi^2=\chi^2_{125}+\chi^2_{t\bar{t}}+\chi^2_{\tau^+\tau^-}+\chi^2_{96}$$
 ,we demand: $\chi^2\leq\chi^2_{\rm SM}$

Parameters as before, except: 95 ${
m GeV} \le m_{h_1} \le$ 98 ${
m GeV}$, and

(1) $0.5 \le \tan \beta \le 4$ for $t\bar{t}$ excess

(2)
$$6 \le \tan \beta \le 12.5$$
 for $\tau^+ \tau^-$ excess

In the N2HDM type II the pseudoscalar A can give rise to the $t\bar{t}$ excess at 400 GeV in combination with a scalar h_1 at \sim 96 GeV giving rise to the LEP and CMS excesses


A 400 ${\rm GeV}$ pseudoscalar and a 96 ${\rm GeV}$ scalar in the type II N2HDM

$$\chi^2=\chi^2_{125}+\chi^2_{t\bar t}+\chi^2_{\tau^+\tau^-}+\chi^2_{96}$$
 , we demand: $\chi^2\leq\chi^2_{\rm SM}$

Parameters as before, except: 95 ${
m GeV} \leq m_{h_1} \leq$ 98 ${
m GeV}$, and

(1) $0.5 \le \tan \beta \le 4$ for $t\bar{t}$ excess

(2)
$$6 < \tan \beta < 12.5$$
 for $\tau^+\tau^-$ excess

In the N2HDM type II the pseudoscalar A can give rise to the $\tau^+\tau^-$ excess at 400 ${\rm GeV}$ in combination with a scalar h_1 at \sim 96 ${\rm GeV}$ giving rise to the LEP and CMS excesses

A pseudoscalar at $\sim 400~{ m GeV}$ in the NMSSM

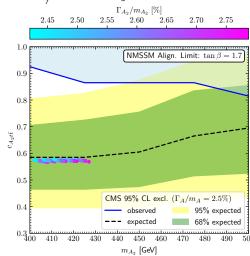
The Higgs sector of the NMSSM is similar to the one of the N2HDM type II

$$W_{\text{NMSSM}} = W_{\text{MSSM}} + \lambda \, \hat{s} \, \hat{H}_u \cdot \hat{H}_d + \frac{1}{3} \, \kappa \, \hat{s}^3$$

$t\bar{t}$ excess \rightarrow low tan β

Alignment without decoupling

$$\lambda = \frac{m_{h_{\text{SM}}}^2 - M_Z^2 \cos 2\beta}{v^2 \sin^2 \beta}$$

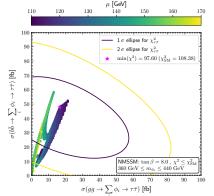

$$\frac{M_A^2 \sin^2 2\beta}{4\mu^2} + \frac{\kappa \sin 2\beta}{2\lambda} = 1$$

[Carena, Haber, Low, Shah, Wagner 1510.09137]

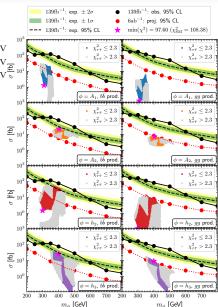
$$\begin{split} M_A &= [410.0, 430.0] \; \text{GeV} \; , \quad \lambda = 0.66 \; , \\ \mu &= [182, 202] \; \text{GeV} \; , \quad \kappa = [0.043, 0.204] \; , \\ A_\kappa &= [-517, 65] \; \text{GeV} \; , \quad M_1 = 140 \; \text{GeV} \; , \\ M_2 &= 180 \; \text{GeV} \; , \quad M_3 = 3000 \; \text{GeV} \; , \\ m_{\tilde{t}} &= 1200 \; \text{GeV} \; , \quad A_t = 0 \; \text{GeV} \\ \text{Code: NMSSMTools} \end{split}$$

Also μ_{CMS} can be explained

 $\rightarrow \, \mathsf{Appendix}/\mathsf{questions}$



A pseudoscalar at $\sim 400~{\rm GeV}$ in the NMSSM


$\tau^+\tau^-$ **excess** \to moderate $\tan \beta = 8$

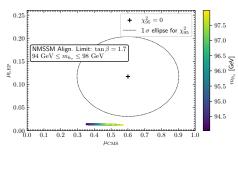
Alignment via decoupling:

$$\begin{split} \tan\beta &= \textbf{8} \ , \quad \lambda = 0.36 \ , \quad \kappa = 0.58 \ , \quad 110 \ {\rm GeV} \le \mu \le 170 \ {\rm GeV} \\ 360 \ {\rm GeV} \le M_A \le 560 \ {\rm GeV} \ , \quad A_\kappa = -200 \ {\rm GeV} \ , \quad A_t = 6 \ {\rm TeV}_{\frac{\mathcal{L}}{6}} \\ m_{\tilde{t}} &= 2.5 \ {\rm TeV} \ , \quad M_3 = 2.7 \ {\rm TeV} \ , \quad M_1 = 1 \ {\rm TeV} \ , \quad M_2 = 2 \ {\rm TeV}_{\frac{\mathcal{L}}{6}} \end{split}$$

Interference effects not important: $\begin{array}{l} m_{h_3} - m_{h_2} \gg \Gamma_{h_2} + \Gamma_{h_3} \\ m_{A_2} - m_{A_1} \gg \Gamma_{A_1} + \Gamma_{A_2} \end{array}$

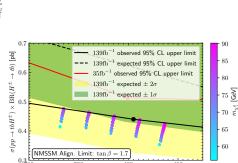
Conclusions

- Pseudoscalar of the N2HDM type II: Either the $t\bar{t}$ or the $\tau^+\tau^-$ excesses
- ightarrow In addition: **Singlet-like scalar** at 96 GeV for LEP and CMS excesses $m_{h_1} \sim$ 96 GeV, $m_{h_2} = 125$ GeV, $m_A \sim$ 400 GeV and $m_{h_3} \sim m_{H^\pm} \gtrsim 550$ GeV ightarrow Very predictive
- Pseudoscalar of the NMSSM: $tar{t}$ excess in alignment-without-decoupling limit
- \rightarrow In addition: Singlet-like scalar at 96 ${\rm GeV}$ can give rise to the CMS excess
- NMSSM with $\tan \beta \sim$ 8: $\tau^+ \tau^-$ excess


Outlook: How to probe?

```
t\bar{t} scenarios: gg \to \phi \to t\bar{t}, pp \to H^{\pm} \to tb (SUSY), gg \to A \to Zh, gg \to H \to ZA (\checkmark) \tau^+\tau^- scenarios: CMS/HL-LHC searches for \phi \to \tau^+\tau^- with 139 {\rm fb}^{-1}/3000 {\rm fb}^{-1} \checkmark 96 GeV scenarios: Indirect h_{125} constraints, CMS gg \to h \to \gamma\gamma with 139 {\rm fb}^{-1}, ILC (?)
```

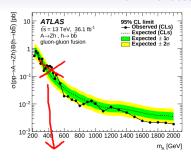
THANKS!

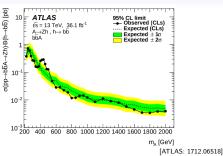

A Higgs boson at 96 ${\rm GeV}$ in the alignment-without-decoupling limit of the NMSSM

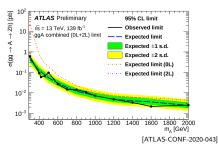
$$\tan \beta = 1.7$$
, $M_A \sim 400 \; \mathrm{GeV} \quad \Rightarrow \quad \lambda \sim 0.66$, $\mu \gtrsim 100 \; \mathrm{GeV}$

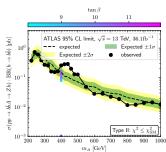
Side effect:

$$m_{H^{\pm}} \sim m_A$$
 —




 $m_{H^{\pm}}$ [GeV]


Side effect:


 $\leftarrow \kappa < \lambda$

"The Zh excess" at $\sim 400~{\rm GeV}$

