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Measurements of W and Z
boson production at ATLAS

(with a focus on pt(Z) and cross-experiment combination)
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Goal of the Measurement

. Pseudo Daté (m)=80.3 GeV)
I:l MC Template (7j=79.3 GeV)
- MC Template (=813 GeV)

= Precision measurement of the transverse ot Ay
momentum as well as the ¢* distribution of
the Z boson
= Eur. Phys. J. C 80 (2020) 616.
» Based on 36.1 fb! (2015/2016 data-set) at
13 TeV
" |mportant to model the p+(V) distribution,
which is crucial for the W-Mass
Measurement
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30 35 40 45 50 55
Decay Lepton pT[GeV]
= Fiducial Volume
" prlepton) > 27 GeV, q
= ||']|| < 2.5
" m||:66'116 GeV M

= Results based on the electron and muon g
decay channel
= Dressed, bare and born-level results
* Reaching a precision of <0.2% for <30 GeV ¢ ut
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Basic Control Plots and

Background Contributions

Top- and electroweak background is estimated
using MC predictions
= Shape of top quark background verified using e/u

Multijet background is estimated using a data-
driven approach via (CR isolation and EfMiss)
=  Qverall background is very small

Test lepton performance by comparing invariant
mass and lepton-rapidity distributions
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INnclusive C

ross Section

and Unfolding

= Measurement of the
fiducial inclusive cross-

section limited by

" |epton identification

= Many uncertainties highly
correlated vs. lepton pr

= are reduced for normalized
differential cross-section

Electron channel Muon channel
Born Dressed Born Dressed

C, 0.509 £0.005 0.522 +£0.005 | 0.685+0.011 0.702 £0.011
Trigger efficiencies +0.0004 +0.0004
Identification & reconstruction efficiencies +0.0049 +0.0102
Isolation efficiencies +0.0009 +0.0029
Energy/momentum scale and resolution +0.0014 +0.0010
Pile-up +0.0011 +0.0019
Model uncertainties +0.0001 +0.0001
Channel Measured cross-section X 8(Z/y" — ¢f) | Predicted cross-section x B(Z/y" — £)

(value =+ stat. + syst. + lumi.) (value + PDF =+ ag + scale + intrinsic)
Z/'y: — ee 738.3+£0.2+ 7.7+15.5pb CT14 PDF
Zly — uu 731.7+0.2+11.3+15.3pb
Z/ly* - et 736.2+£02+ 6.4+155pb 70345, S *¢ *2 pb [STDM-2016-02]

= Measurement of differential cross-section via Unfolding
" |terative Bayesian Unfolding with 4 Iterations

* Model uncertainty tested by reweighting the MC Truth Prior to the observed difference

between data and MC on detector level

" |t was also shown that this uncertainty covers when taking an alternative MC Generator

(Sherpa) as Pseudo Data

= Statistical uncertainties are estimated with MC Toys
= Systematic uncertainties are estimated by up- and down- variations of all uncorrelated

nuisance parameters
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Uncertainties on differential P(£)

and ¢~ Distributions

N

= Dominant uncertainties are statistical ones
* While data statistics are dominant every-
where, also limited MC statistics is not

- ATLAS
1.8—1Vs=13TeV, 36.1 fo”'

[ Z/y*—pu (normalized)
1.6

[%]

n

:_ = Statistical Unc.

1.4 = Lepton Efficiencies
' ' = Lepton Scale/Resolution
negllglble 1.2 Model Unc. o
= Others
1 ==== Total

0.8
0.6
0.4

= |epton efficiency uncertainties become
important for the very high pr regime

Uncertainty on 1/c do/d¢*
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= [epton related uncertainties significantly 02| ,':I : 3
reduced (by construction of ¢*) T E——— 1 -
0 (um)

= Lepton momentum/energy scale AL T T BT

1.8[-{s=13 TeV, 36.1 fb"!
[ Z/y*—pp (normalized)
1.6

[ — Statistical Unc.

uncertainties are highly correlated vs. bins,

i.e. can lead to an overall change of the 1.4 oo s
Spectrum 121; - Z;deerlsUnc_

0.8F
O.Gf—
045
0_25..

Uncertainty on 1/c dc/de(II)[%]

= The unfolding matrix for ¢* is very diagonal
(high purity), hence very small model
uncertainties are expected

0 5 10 15 20 25 30 100 300 900
p! [GeV]
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Combination

Treat statistical uncertainties uncorrelated between channels (and nearly

uncorrelated vs. bins)

= Split efficiency systematics in bin-to-bin uncorrelated and correlated components

= Several uncertainties are also correlated vs channels, e.g. z-positioning, pile-up, model-
uncertainties

We observe a chi2/ndf=47/44 and 32/36 for Pt(£) and ¢*, respectively

Linear Scale
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This discrepancy is not significant
. . . when taking correlations into account
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Comparison to Theory

= Comparison to Powheg+Pythia (Baseline MC), Sherpa2.2.1, Pythia8,
RadISH+NNLOjet+N2LL
" As expected, similar trends for pr(Z) and ¢~
* (Good description with RadISH over the full spectrum (prediction for ¢* in preparation)
= Pythia8 with AZ tune (as used for the W mass measurement)
describes the data well at low pT
* Theory uncertainties significantly larger than experimental uncertainties
= We have tiny uncertainties <0.5%!

Linear Scale Logarithmic Scale
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Can we trust our high precision?

= (Can we trust our small uncertainties?
= We need to test the consistency across

the LHC experiments
= The LHC (EW) Working Groups are the

natural place for this effort g — T T 1 ]
8 sl ~_ ATLAS (Born)
. . . . 5 f = CMS (Dressed
= Discuss in the following the comparison RS 7= I i
of pr(2) between ATLAS and CMS rosf- 7o % I B O
(JHEP 12 (2019) 061) 3 e
= Detailed discussion can be found in ot e
https://indico.cern.ch/event/955878/ -
* Workflow ) 000 I OO 1O OO VOO OO DO O T
= Concentrate on dressed level definition A 1

= Correct for differences in fiducial volume
definition using transfer factors

= Use TGraph Linear interpolation to rebin
CMS results in ATLAS Binning
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Comparison between

ATLAS and CMS

v:‘_‘()_07_ Linear Scale ———r ']Lmavithmicgcalg
. . % s
= Preliminary Results Sooef s
* Good news: We observe consistent shape g0 B
for pr(2)<25 GeV, i.e. in the high precision 2 ¥
regime | oozl -,
= Bad news: We see differences up to 10% 0ot g P
between 50-200 GeV o ottt ceon L —
" Unlikely that there is an experimental problem: in 3 ‘-°2-,_°__ el tese e
the energy/momentum scales, as we see the '6‘828% Jﬂ"
same behaviour in PT(Z) and PhiStar, In the s o —
efficiencies, as they should not be so localized ® & ,_‘__l_’—
= Difficult to imagine a background that e R ® R 0 S een
' ' — Linear Scale = — .L° arithmic Scale
explains 10% differences 0% 'E_TAS
" However, ATLAS substracts yy->Il background, _90'07’_
while CMS does not. 0.5% effect in the first bin _ijo'osg_ _,_ v Cms
.50.05_— o
. . . = 0.04f x
= Most likely solution: Interpolation 003f e
introduces a significant bias oogf” e,
= \When calculating only 2 bins, we see. a O e
good agreement R e a———— :
» When using wider bins for p1(2)>25 GeV, 578 :
we see indeed a quite good agreement. > Gj_ﬂ_,—_ﬂ__J —
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| essons learnt and a wishlist for

= The comparison of Pt(Z) is just a test case.
= Comparisons are not easy!

= But some simple measures could help before
we start with Run-3
= Agree on at least one common binning
= We can still keep the “detector”
optimized versions
= Define a common fiducial volume
= Again, we can keep the “detector”
optimized versions for the publications,
but at least provide a “supporting”
measurement
= Agree on “what is signal and what is
backgrounds”
= All this is trivial when you still do the analysis —
it is nearly impossible after publication
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Asymmetry

Theory/Data

Run-3

ys. J. C 79 (2019) 760
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https://link.springer.com/article/10.1140/epjc/s10052-019-7199-0
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Summary
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First ATLAS measurement of pr(£) and ¢* at 13
TeV based on the 2015/2016 data-set

Measurement performed in the electron and the
muon decay channel

Combination yields a precision of 0.2% and
better for P1(Z£)<30 GeV

Let’s improve in the analysis design between the
LHC experiments, before Run-3



