

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Matthias Schott on behalf of the ATLAS Collaboration Measurements of W and Z boson production at ATLAS

(with a focus on $p_T(Z)$ and cross-experiment combination)

Prof. Dr. Matthias Schot

Goal of the Measurement

- Precision measurement of the transverse momentum as well as the φ* distribution of the Z boson
 - Eur. Phys. J. C 80 (2020) 616.
 - Based on 36.1 fb⁻¹ (2015/2016 data-set) at 13 TeV
 - Important to model the p_T(V) distribution, which is crucial for the W-Mass Measurement
- Fiducial Volume
 - p_T(lepton) > 27 GeV,
 - |η_l| < 2.5</p>
 - m_{II} = 66-116 GeV
- Results based on the electron and muon decay channel
 - Dressed, bare and born-level results
 - Reaching a precision of <0.2% for <30 GeV

Basic Control Plots and Background Contributions

- Top- and electroweak background is estimated using MC predictions
 - Shape of top quark background verified using e/µ
- Multijet background is estimated using a datadriven approach via (CR isolation and E_T^{Miss})
 - Overall background is very small
- Test lepton performance by comparing invariant mass and lepton-rapidity distributions

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Inclusive Cross Section and Unfolding

- Measurement of the fiducial inclusive crosssection limited by
 - Iepton identification
 - Many uncertainties highly correlated vs. lepton p_T
 - are reduced for normalized differential cross-section

		Electron channel		Muon channel		
		Born	Dressed	Born	Dressed	
C_{Z}		0.509 ± 0.005	0.522 ± 0.005	0.685 ± 0.011	0.702 ± 0.011	
Trigger efficiencies		± 0.0004		± 0.0004		
Identification & reconstruction efficiencies		± 0.0049		± 0.0102		
Isolation efficiencies		± 0.0009		± 0.0029		
Energy/momentum scale and resolution		± 0.0014		± 0.0010		
Pile-up		± 0.0011		± 0.0019		
Model uncertainties		± 0.0001		± 0.0001		
Channel	Measured cross-section $\times \mathcal{B}(Z/\gamma^* \to \ell \ell)$) Predicted c	Predicted cross-section $\times \mathcal{B}(Z/\gamma^* \to \ell \ell)$		
	(value \pm stat. \pm syst. \pm lumi.)		(value ± F	(value \pm PDF $\pm \alpha_{S} \pm$ scale \pm intrinsic)		
$Z/\gamma^* \to ee$	$738.3 \pm 0.2 \pm 7.7 \pm 15.5 \text{ pb}$		CT14 PDI	CT14 PDF		
$Z/\gamma^* \to \mu\mu$	$731.7 \pm 0.2 \pm 11.3 \pm 15.3 \mathrm{pb}$					
$Z/\gamma^* \to \ell\ell$	$736.2 \pm 0.2 \pm 6.4 \pm 15.5 \text{ pb}$		703^{+19}_{-24}	$703_{-24}^{+19} + 6_{-8}^{+6} + 4_{-5}^{+5} \text{ pb} [\text{STDM-2016-02}]$		

- Measurement of differential cross-section via Unfolding
 - Iterative Bayesian Unfolding with 4 Iterations
 - Model uncertainty tested by reweighting the MC Truth Prior to the observed difference between data and MC on detector level
 - It was also shown that this uncertainty covers when taking an alternative MC Generator (Sherpa) as Pseudo Data
 - Statistical uncertainties are estimated with MC Toys
 - Systematic uncertainties are estimated by up- and down- variations of all uncorrelated nuisance parameters

Uncertainties on differential $P_T(Z)$ and ϕ^* Distributions

- Dominant uncertainties are statistical ones
 - While data statistics are dominant everywhere, also limited MC statistics is not negligible
- Lepton efficiency uncertainties become important for the very high p_T regime
 - Lepton related uncertainties significantly reduced (by construction of φ*)
- Lepton momentum/energy scale uncertainties are highly correlated vs. bins, i.e. can lead to an overall change of the spectrum
- The unfolding matrix for φ* is very diagonal (high purity), hence very small model uncertainties are expected

Combination

- Treat statistical uncertainties uncorrelated between channels (and nearly uncorrelated vs. bins)
 - Split efficiency systematics in bin-to-bin uncorrelated and correlated components
 - Several uncertainties are also correlated vs channels, e.g. z-positioning, pile-up, modeluncertainties
- We observe a chi2/ndf=47/44 and 32/36 for $P_T(Z)$ and ϕ^* , respectively

Comparison to Theory

- Comparison to Powheg+Pythia (Baseline MC), Sherpa2.2.1, Pythia8, RadISH+NNLOjet+N2LL
 - As expected, similar trends for $p_T(Z)$ and ϕ^*
 - Good description with RadISH over the full spectrum (prediction for ϕ^* in preparation)
 - Pythia8 with AZ tune (as used for the W mass measurement) describes the data well at low pT
 - Theory uncertainties significantly larger than experimental uncertainties
 - We have tiny uncertainties <0.5%!

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Can we trust our high precision?

Can we trust our small uncertainties?

- We need to test the consistency across the LHC experiments
- The LHC (EW) Working Groups are the natural place for this effort
- Discuss in the following the comparison of p_T(Z) between ATLAS and CMS (JHEP 12 (2019) 061)
 - Detailed discussion can be found in <u>https://indico.cern.ch/event/955878/</u>

Workflow

- Concentrate on dressed level definition
- Correct for differences in fiducial volume definition using transfer factors
- Use TGraph Linear interpolation to rebin CMS results in ATLAS Binning

Comparison between ATLAS and CMS

Preliminary Results

- Good news: We observe consistent shape for p_T(Z)<25 GeV, i.e. in the high precision regime
- Bad news: We see differences up to 10% between 50-200 GeV
 - Unlikely that there is an experimental problem: in the energy/momentum scales, as we see the same behaviour in PT(Z) and PhiStar, In the efficiencies, as they should not be so localized
- Difficult to imagine a background that explains 10% differences
 - However, ATLAS substracts yy->II background, while CMS does not. 0.5% effect in the first bin
- Most likely solution: Interpolation introduces a significant bias
 - When calculating only 2 bins, we see. a good agreement
 - When using wider bins for p_T(Z)>25 GeV, we see indeed a quite good agreement.

Lessons learnt and a wishlist for Run-3

- The comparison of $P_T(Z)$ is just a test case.
 - Comparisons are not easy!
- But some simple measures could help before we start with Run-3
 - Agree on at least one common binning
 - We can still keep the "detector" optimized versions
 - Define a common fiducial volume
 - Again, we can keep the "detector" optimized versions for the publications, but at least provide a "supporting" measurement
 - Agree on "what is signal and what is backgrounds"
 - All this is trivial when you still do the analysis it is nearly impossible after publication

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Summary

- First ATLAS measurement of p_T(Z) and φ* at 13 TeV based on the 2015/2016 data-set
- Measurement performed in the electron and the muon decay channel
- Combination yields a precision of 0.2% and better for P_T(Z)<30 GeV
- Let's improve in the analysis design between the LHC experiments, before Run-3

