

Measurements of multi-boson production at ATLAS

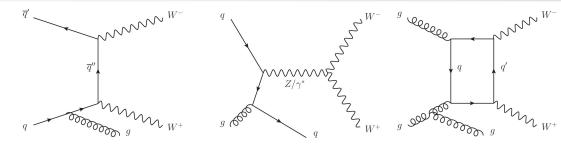
Jessica Metcalfe Argonne National Laboratory

On Behalf of the ATLAS Collaboration

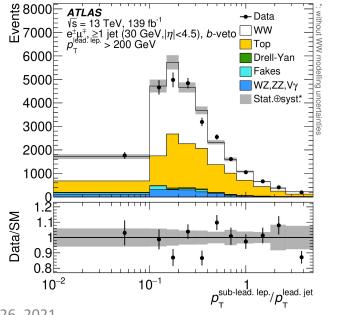
Motivation:

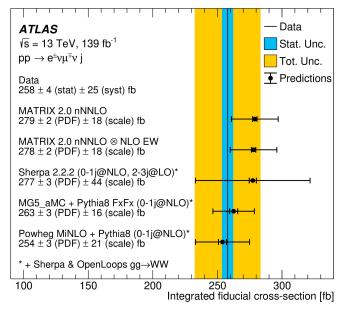
- Multiboson physics provides a unique probe of the Standard Model through electroweak-boson self-interactions
 - Precision tests of SM theory predictions
 - Search for Beyond Standard Model physics
 - Effective field theory framework

Differential cross-section measurements:

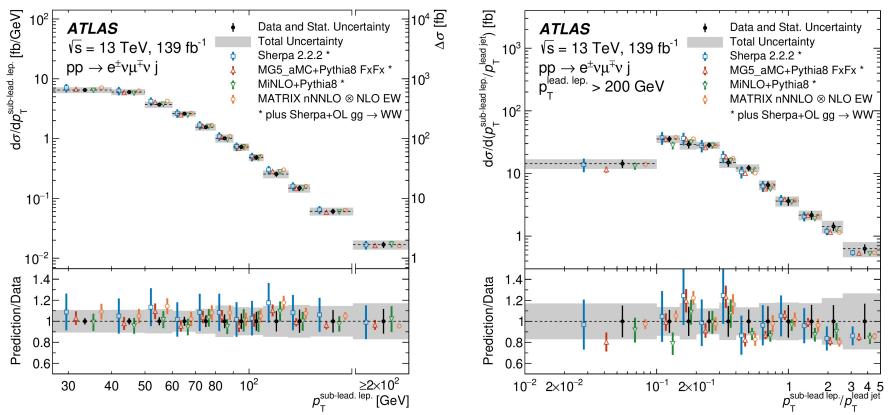

- Look deeper into the production mechanisms through measurements of differential cross-sections
 - WW + \geq 1 jet
 - Inclusive 4-leptons

Triboson measurement:


- Push to the edge of observation some of the most rare processes measured to date
 - WWW New!


WW + ≥ 1 jet

- Measurement of WW pair production with a jet inclusive phase space
 - Select one opposite sign eµ pair and at least one hadronic jet
 - Stringent test of theoretical predictions
 - Perturbative QCD
 - Higher order EWK corrections



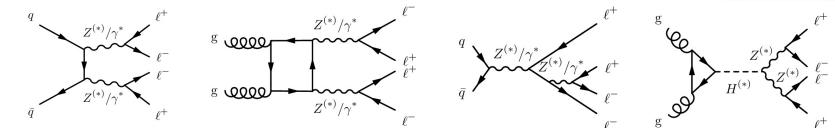
EPS-HEP

WW + \geq 1 jet

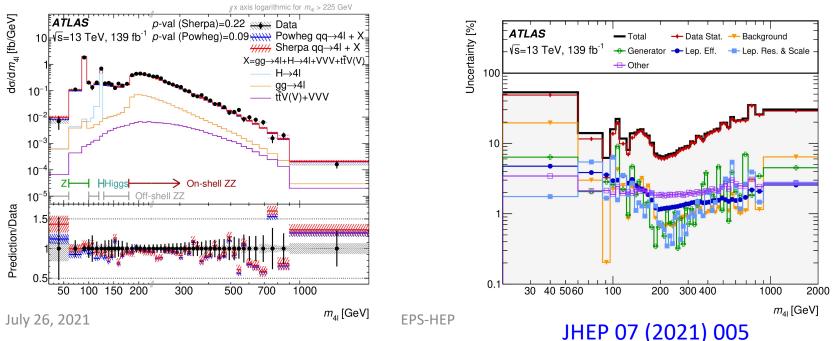
Differential cross section measurements for many kinematic variables

- Sub-leading lepton p_T
- Sub-leading lepton p_T /leading jet p_T for p_T (leading lepton) > 200 GeV
- Good agreement among the MC predictions and data
- Limits were also set on dim-6 EFT operators

<u>WW + \geq 1 jet Poster by Jack MacDonald</u>

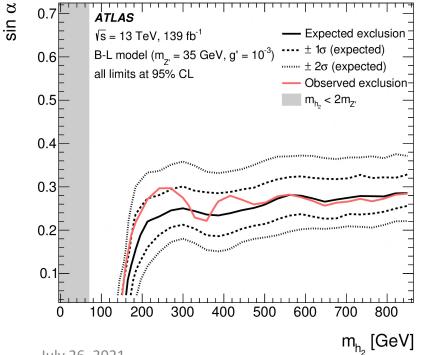

July 26, 2021

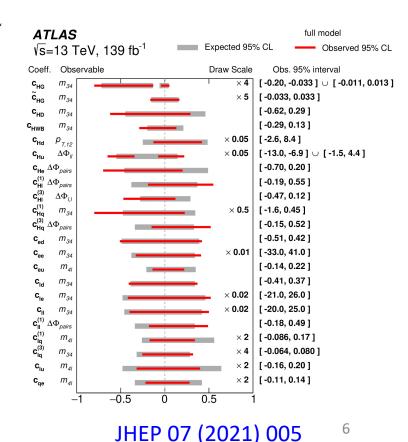
<u>JHEP 06 (2021) 003</u>


4 leptons

5

- 4 leptons with 2 same flavor, opposite electric charge pairs
- Minimal assumptions on theory for background subtraction and unfolding
- Production regions:
 - Single Z boson production, Higgs boson production, on-shell & off-shell ZZ production
 - Double-differential cross-section distributions shown for many kinematic variables (m₄₁ below) and in each of the regions

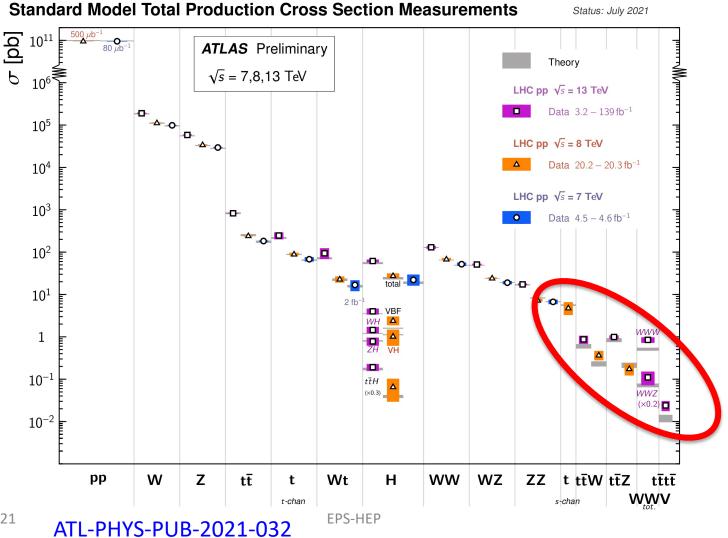

4 leptons



- Extract the branching fraction for Z -> 4I
 - Most precise measurement to date

 $\mathcal{B}_{Z \to 4\ell} = (4.41 \pm 0.13 \,(\text{stat.}) \pm 0.23 \,(\text{syst.}) \pm 0.09 \,(\text{theory}) \pm 0.12 \,(\text{lumi.})) \times 10^{-6}$ $= (4.41 \pm 0.30) \times 10^{-6},$

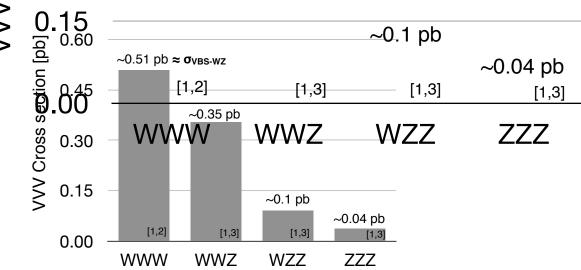
- Baryon number Lepton number gauge model:
 - Z' and an exotic Higgs boson h_2 mixing angle α
- BSM search in EFT framework: dim-6 operators



EPS-HEP

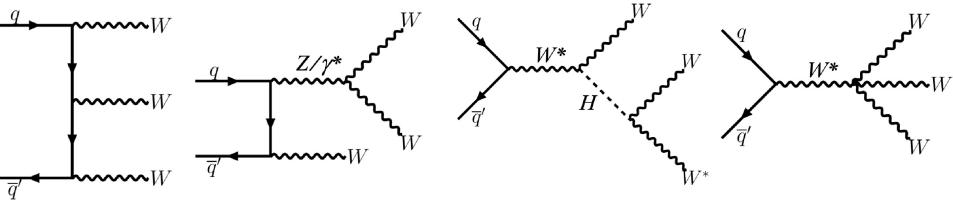
Triboson processes are some of the most rare SM processes within reach Evidence has already been measured in many cases \rightarrow pushing for observation

July 26, 2021


Triboson

Chang UCSD

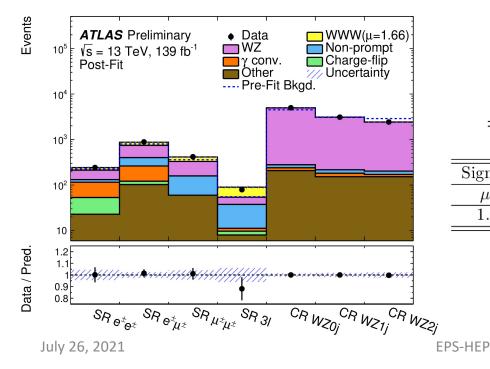
- Combined triboson memory urements have reached first evidence & observation
- Evidence for $W \stackrel{\frown}{=} W \stackrel{\top}{=} W \stackrel{\top}{=} w$ with partia PREAM2 data set 80 fb⁻¹
 - ATLAS 80 fb $\underline{\Theta}$: W/V/μ54.1 σ , WWW 3.2 σ
- First observation of triboson production in the measurement of VVV production ~ 0.35 pb
 - <u>CMS 137 fb</u> \mathcal{Q} VVV 5.7 σ , WWW 3.3 σ
- Individual channels or of ust coming into sensitivity


New: ATLAS $\mathbf{139}$ fb⁻¹: WWW 8.2 σ

[1] https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt13TeV, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR [2] JHEP 09 (2017) 034 [3] MadGraph5 aMC@NLO calculation Figure produced by Philip Chang July 26, 2021

WWW

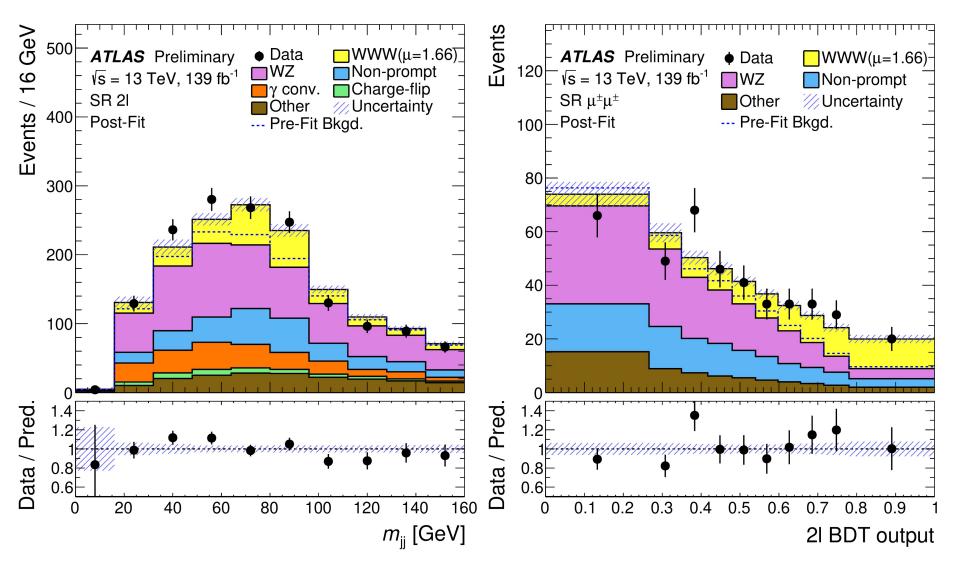
 $W^{\pm}W^{\mp}W^{\mp} \rightarrow \ell \upsilon \ell \upsilon j OR \ell \upsilon \ell \upsilon \ell \upsilon$


WWW production measured via 2 channels:

- 2 lepton channel: WWW $\rightarrow \ell^{\pm} v \ell^{\pm} v$ jj
 - Two same-sign leptons (ee, $e\mu$, $\mu\mu$)+_W \rightarrow jj
- 3 lepton channel: WWW $\rightarrow \ell^{\pm} v \ell^{\mp} v \ell^{\mp} v$
 - Zero same-flavor opposite sign lepton pairs
- Off-shell WH contribution (3rd diagram) is included in the signal definition

WWW: Analysis Strategy

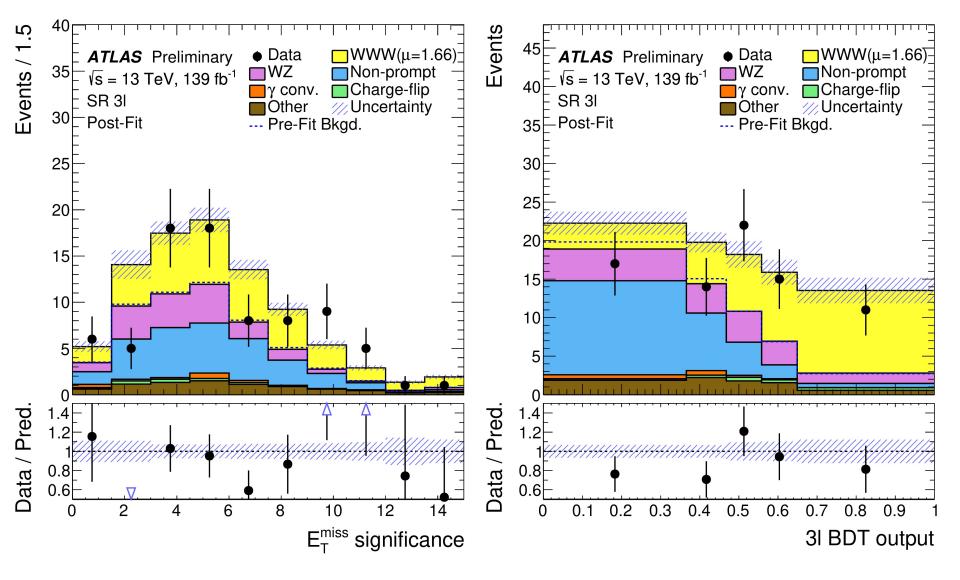
- Dominated by WZ background
 - Employ data-driven method to scale WZ
 - use 0j, 1j, \geq 2j control regions
 - Other data-driven backgrounds: Nonprompt, γ conversion, charge-flip
- BDT is used to fit signal and control regions simultaneously
 - 12 variables in 2l channels
 - 11 variables in the 3l channel



2ℓ	3ℓ
$\left m_{jj}-m_W ight $	$E_{\rm T}^{\rm miss}$ significance $\times 10/E_{\rm T}^{\rm miss}$
$p_{\rm T}$ (forward jet)	$p_T(\ell_2)$
$E_{\rm T}^{\rm miss}$ significance	$N(ext{jets})$
$p_T(j_2)$	same flavor $m_{\ell\ell}$
minimum $m(\ell, j)$	$m_T(\ell\ell\ell,E_{ m T}^{ m miss})$
$m(\ell_2, j_1)$	$m(\ell_2,\ell_3)$
N(m jets)	$\Delta \phi(\ell\ell\ell,E_{ m T}^{ m miss})$
$p_{\mathrm{T}}~(\ell_2)$	minimum $\Delta R(\ell, \ell)$
$m_{\ell\ell}$	p_{T} (ℓ_3)
$ \eta(\ell_1) $	$m_T(\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$
N(leptons in jets $)$	$E_{\rm T}^{\rm miss}$ significance
$m(\ell_1, j_1)$	

Signal Strength	Normalization Factors			
$\mu(WWW)$	WZ + 0 jets	WZ + 1 jet	$WZ + \geq 2$ jets	
1.66 ± 0.28	1.12 ± 0.11	0.98 ± 0.04	0.88 ± 0.18	

ATLAS-CONF-2021-039


WWW:21

ATLAS-CONF-2021-039

WWW:31

ATLAS-CONF-2021-039

WWW

Fit	Observed (expected) significances $[\sigma]$	$\mu(WWW)$
$e^{\pm}e^{\pm}$	2.3(1.4)	1.69 ± 0.79
$e^{\pm}\mu^{\pm}$	4.6(3.1)	1.57 ± 0.40
$\mu^{\pm}\mu^{\pm}$	5.6(2.8)	2.13 ± 0.47
2ℓ	6.9(4.1)	1.80 ± 0.33
3ℓ	4.8(3.7)	1.33 ± 0.39
Combined	8.2(5.4)	1.66 ± 0.28

The SM background-only hypothesis is rejected.

Cross-section measurement:

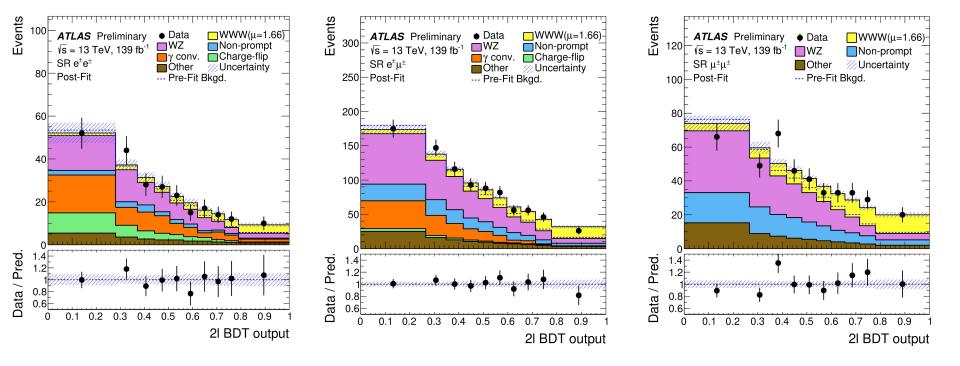
- 850 \pm 100 (stat.) \pm 80 (syst.) fb
- SM prediction used to estimate μ
 - WWW+WH: NLO QCD MC: 511 \pm 42 fb
- Also available Fixed order prediction
 - WWW: NLO QCD+NLO EW <u>Ref.</u>
 - WH(H→WW*) N3LO QCD+NLO EW <u>Ref.</u>
 - WWW+WH = 505 fb
 - (approximately 6% uncertainty)

Uncertainty source	$\Delta\sigma/\sigma$ [%]
Data-driven background	5.3
Prompt-lepton-background modeling	3.3
Jets and $E_{\rm T}^{\rm miss}$	2.8
MC statistics	2.8
Lepton	2.1
Luminosity	1.9
Signal modeling	1.5
Pile-up modeling	0.9
Total systematic uncertainty	9.5
Data statistics	11.2
WZ normalizations	3.3
Total statistical uncertainty	11.6

- New multiboson differential cross-section measurements & BSM searches in an EFT framework in
 - WW+jets
 - Inclusive 4-leptons
- $W^{\pm}W^{\mp}W^{\mp}$ observed for the first time 8.2 σ (5.4 σ expected)!
 - Cross-section measured: 850 \pm 100 (stat.) \pm 80 (syst.) fb

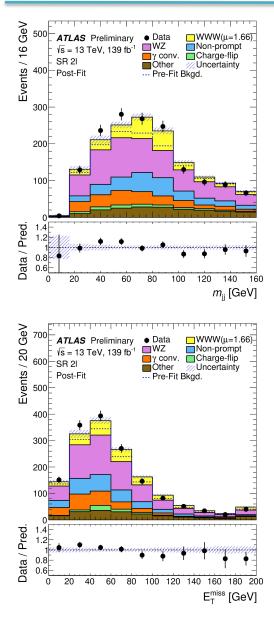
Backup

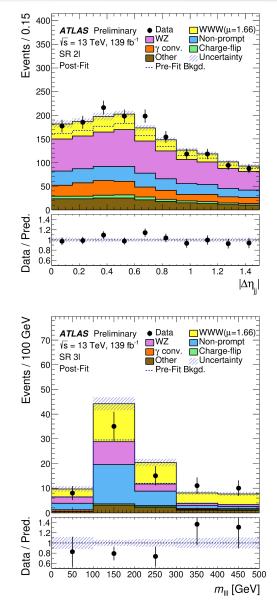
WWW



Event Yields:

	$e^{\pm} e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	3ℓ
WWW	29.3 ± 4.4	128 ± 19	84 ± 12	35.8 ± 5.2
WZ	80.6 ± 5.7	344 ± 22	171 ± 10	16.4 ± 1.4
Charge-flip	30.3 ± 7.2	18.8 ± 4.5	—	1.7 ± 0.4
γ conversions	62.1 ± 8.7	142 ± 15		1.5 ± 0.1
Non-prompt	16.6 ± 4.1	138 ± 24	98 ± 21	26.3 ± 2.9
Other	22.8 ± 3.7	102 ± 15	59.7 ± 9.0	8.0 ± 0.9
Total predicted	242 ± 11	872 ± 22	414 ± 17	89.7 ± 5.4
Data	242	885	418	79


Table 2: Post-fit signal, background and observed yields in the 2ℓ and 3ℓ SRs. The uncertainties include the statistical and systematic uncertainties of the yields, computed considering the correlations among nuisance parameters.



WWW: Kinematic Plots

EPS-HEP