Multiboson Production in CMS

EPS-HEP Conference 2021

Mohammad Abrar Wadud

Monday 26 July 2021

Motivation for Multiboson Studies

Test Non-Abelian Structure of Electroweak Theory

- Boson self-couplings determine:
 - x-sections
 - polarizations
- Deviations predicted by anomalous (triple/quartic) gauge coupling models
 - aTGC & aQGC add higher dimensional operators (EFT) than SM

Probe EWSB in Vector Boson Scattering

- ▶ Unitarity preseverd in VBS via Higgs contributions
 - w/o Higgs, $\sigma \sim {\rm E^2}$
- Deviations from EWSB would manifest in differential cross-sections and in aTGC/aQGC searches

BSM Searches

- Extra dimensions
- ▶ New resonances/gauge bosons
- ► aTGC & aQGC

Validation of Perturbative Calculations

- NNLO QCD
 - <u>MATRIX</u> simulations
- NLO EW

Reviews: <u>PPNP.2019.06.002</u>, <u>PPNP.2018.01.009</u>, RevModPhys.89.035008

CMS Multiboson Measurements in Run II

$W + \gamma$: Differential Cross-sections

$W + \gamma$: aTGC Constraints

aTGC enhancement cuts:

- $\blacktriangleright p_T^l > 80 \, \text{GeV}$
- $\blacktriangleright p_T^{\gamma} > 150 \, \mathrm{GeV}$
- ▶ Jet veto (p_T > 30 GeV & $|\eta|$ < 2.5)

Interference Resurrection

• At $E > m_W$, SM and BSM have different helicity configurations for $W_T V_T$

Solution: Search in 2D space of

 |φ_f| and p_T^γ
 Improved further with jet veto

WZ: Cross-sections & Charge Asymmetry

WZ production:

- ▶ Primarily q-initiated→sensitive to u & d PDFs
- ▶ Dominant trilepton source →understand BG precisely

Event Selection

- \blacktriangleright 2 1 opposite-sign same-flavor lepton pair
 - ullet $|\eta^e|$ < 2.5, $|\eta^\mu|$ < 2.4
- ▶ $p_T(l_{Z1}) > 25 \text{ GeV}, p_T(l_{Z2}) > 10 \text{ GeV}, p_T(l_W) > 25 \text{ GeV}$
- ▶ $|m(l_{Z1}, l_{Z2}) m_Z| < 15 \,\text{GeV}$
- ▶ $\not E_T$ > 30 GeV (suppress non-prompt *l*)
- $m(I_{Z1}, I_{Z2}, I_W) > 100 \,\text{GeV} \,(\text{suppress} \, Z\gamma)$
- b-tag veto (suppress top)
- 4th lepton veto (suppress ZZ)
- min{m(l, l)} > 4 GeV (match generator)
- ► Fiducial region for cross-section:
 - $|\eta^l| <$ 2.5, 60 GeV $< m(l_{Z1}, l_{Z2}) <$ 120 GeV

WΖ

Total Cross-sections

Charge Asymmetry CMS Preliminary 137.2 fb¹ (13 TeV) eeu POWHEG₄NNPDE31 uue MATRIX+NNPDF31 - MATRIX-PDE4LHC15 μцц MATRIX-CT14 Statistica Systemati Combined 1.4 1.6 $\sigma(pp \rightarrow W^{\dagger}Z) / \sigma(pp \rightarrow W^{\dagger}Z)$ **PDF** Constraints CMS Preliminary 137.2 fb⁻¹ (13 TeV) Beolicas Prediction Prefit σ (PDF) \rightarrow 10% drop Prediction Postfit Manauromont **Bayesian** weighting (PhysRevD.58.094023, PhysRevD.89.114020) Replica

Multiboson Production in CMS

WZ: Polarization Fraction Measurement

Multiboson Production in CMS

WZ

WZ: Differential Cross-sections & aTGC Constraints

WZ

Limits on Anomalous WWZ Couplings

Parameter	95% CI, Exp. (TeV ⁻²)	95% CI, Obs. (TeV ⁻²)	Best fit, Obs. (TeV^{-2})
$c_{\rm w}/\Lambda^2$	[-2.05, 1.27]	[-2.52, 0.33]	-1.34
$c_{\rm www}/\Lambda^2$	[-1.27, 1.33]	[-1.04, 1.19]	0.15
$c_{\rm b}/\Lambda^2$	[-86.0, 125.0]	[-42.7, 113.0]	43.6
$\tilde{c}_{\rm www}/\Lambda^2$	[-0.76, 0.65]	[-0.62, 0.53]	-0.03
$\tilde{c}_{\rm w}/\Lambda^2$	[-46.1, 46.1]	[-45.9, 45.9]	0.0
CD	The second se	and the second	

CP-conserving coupling limits improved by $\times 2$

First CMS limits on CP-violating WWZ couplings

5 EFT operators in dim-6 extension contribute to WZ production:

3 CP-conserving:

Data/Pred.

CWWW CW $\overline{\Lambda^2}$, $\overline{\Lambda^2}$, $\overline{\Lambda^2}$

2 CP-violating:

CWWW CW Λ^2 , $\overline{\Lambda^2}$

Search in observable M(WZ)

SMP-20-014

$VV @ 5.02 \text{ TeV} (302 \text{ pb}^{-1})$

• Low pile-up run: $\mu_{5 \text{ TeV}} = 2$ ($\mu_{13 \text{ TeV}} = 23, 32$)

Categories:

- ► WW: 2/
- WZ: (a) 3/ & (b) 2 same-sign μ 's
- ZZ: (a) 4*l* & (b) $2l + 2\nu$

Source	Number of events
Top quark	$9.0 \pm 0.1 \pm 1.1$
WZ+ZZ	$5.6\pm1.0\pm1.1$
Drell–Yan	$1.8\pm0.5\pm0.2$
Conversions	$2.7\pm0.7\pm0.7$
Nonprompt ℓ	$11.2 \pm 1.3 \pm 3.4$
Background	$30.3 \pm 1.9 \pm 3.9$
WW signal	$55.2 \pm 0.3 \pm 1.8$
Data	101

WW Yields

SR	Background	Signal	Data
WZ 3ℓ	$4.0\pm0.6\pm0.4$	$14.8\pm0.1\pm0.6$	12
WZ 2µss	$0.6\pm0.1\pm0.1$	$3.2\pm0.8\pm0.2$	4
$ZZ 4\ell$	$0.5\pm0.2\pm0.1$	$2.7\pm0.0\pm0.2$	3
$ZZ 2\ell 2\nu$	$4.8\pm0.3\pm0.7$	$4.0\pm0.0\pm0.2$	12

WZ & ZZ Yields

Event Selection
\geq 2 photons: p_T $>$ 20 GeV
W $\gamma\gamma$: 1 lepton, $p_T^{e(\mu)}>$ 35(30) GeV
$Z\gamma\gamma$: 2 same-flavor opposite-sign leptons, $p_T^{e(\mu)} > 35(30)$ GeV, $m_{ } > 55$ GeV

aQUC LIIIIIIS							
	$W\gamma\gamma$ (Ζγγ (΄	$Z\gamma\gamma$ (TeV ⁻⁴)				
Parameter	Expected	Observed	Expected	Observed			
f_{M2}/Λ^4	[-57.3, 57.1]	[-39.9, 39.5]	_	-			
f_{M3}/Λ^4	[-91.8, 92.6]	[-63.8, 65.0]	_	_			
f_{T0}/Λ^4	[-1.86, 1.86]	[-1.30, 1.30]	[-4.86, 4.66]	[-5.70, 5.46]			
f_{T1}/Λ^4	[-2.38, 2.38]	[-1.70, 1.66]	[-4.86, 4.66]	[-5.70, 5.46]			
f_{T2}/Λ^4	[-5.16, 5.16]	[-3.64, 3.64]	[-9.72, 9.32]	[-11.4, 10.9]			
f_{T5}/Λ^4	[-0.76, 0.84]	[-0.52, 0.60]	[-2.44, 2.52]	[-2.92, 2.92]			
f_{T6}/Λ^4	[-0.92, 1.00]	[-0.60, 0.68]	[-3.24, 3.24]	[-3.80, 3.88]			
f_{T7}/Λ^4	[-1.64, 1.72]	[-1.16, 1.16]	[-6.68, 6.60]	[-7.88, 7.72]			
f_{T8}/Λ^4	—	—	[-0.90, 0.94]	[-1.06, 1.10]			
f_{T9}/Λ^4	-	—	[-1.54, 1.54]	[-1.82, 1.82]			

OCCU Inte

<u> </u>		
I POCC-	secti	one
CI033-3	Secu	Ulla

Cross Section	Theoretical (fb) MadGraph5_aMC@NLO	Measured (fb)			
$W\gamma\gamma$	18.70 \pm 0.03 (MC stat) \pm 0.12 (PDF+scale)	13.6 $^{+1.9}_{-1.9}$ (stat) $^{+4}_{-4}$ (syst) \pm 0.08 (PDF+scale)			
$Z\gamma\gamma$	5.96 \pm 0.01 (MC stat) \pm 0.06 (PDF+scale)	$5.41^{+0.58}_{-0.55}$ (stat) $^{+0.64}_{-0.70}$ (syst) \pm 0.06 (PDF+scale)			
First measurement @ 13 TeV					

- Vγγ is an important background in VH and BSM searches → need precise understanding
- Under EFT, 10 dim-8 operators contribute to $V\gamma\gamma$ production
 - Search in $p_T^{\gamma\gamma}$

 $V\gamma\gamma$

- > Presented recent CMS results on multiboson measurements with Run II data
- ▶ Observations consistent with SM predictions
- ▶ Tightened constraints on anomalous coupling parameters
- First measurements:
 - Observation of logitudinal W in WZ production
 - CMS limits on CP-violating anomalous WWZ coupling
 - VV cross-sections @ 5.02 TeV
 - $V\gamma\gamma$ cross-sections @ 13 TeV
- More Run II multiboson results to come

BACKUP

Uncertainty	Affects	Corr.	Relative effect on expected yield
2	shape	years	1 2
	Experi	mental	
Integrated luminosity	-	Partial	2.3-2.5%
Pileup modeling	\checkmark	\checkmark	0.2-3.1%
L1 prefiring	\checkmark	\checkmark	0.3-1.1%
Electron ID	\checkmark	\checkmark	0.7-2.8%
Electron ID ($p_T^e > 200 \text{ GeV}$)	\checkmark	-	0.1-1.2%
Electron trigger	-	-	0.5%
Muon ID (stat)	\checkmark	-	0.1-0.6%
Muon ID (syst)	\checkmark	\checkmark	0.2-0.7%
Muon trigger	\checkmark	-	0.1-0.7%
Photon ID	\checkmark	\checkmark	0.6-6.0%
Photon ID ($p_T^{\gamma} > 200 \text{ GeV}$)	\checkmark	-	2.1-4.7%
Photon ID (high $p_{\rm T}$ extrapolation)	\checkmark	-	Typically 3.0–9.0%, max. 14%
Photon (e veto)	-	-	1%
Photon energy scale	\checkmark	\checkmark	Typically 0.1–4.8%, max. 13%
Jet energy scale	\checkmark	-	1-4%
p _T ^{miss} scale	\checkmark	Partial	0.1-10.1%
$e \rightarrow \gamma$ misidentification	\checkmark	-	Typically 6.7–18%, max. 25%
Jet $\rightarrow \gamma$ misidentification	\checkmark	-	10-45%
Misidentified e	\checkmark	-	Typically 13–36%, max. 75%
Misidentified μ	\checkmark	-	Typically 16-42%, max. 70%
· · ·	Theor	retical	
$W^{\pm}\gamma$ acceptance (scale)	~	~	0.3-1.7%
$W^{\pm}\gamma$ acceptance (PDF)	\checkmark	\checkmark	Typically 0.5–2.2%, max. 7.6%
$W^{\pm}\gamma$ out-of-acceptance (scale)	\checkmark	\checkmark	5.2-12%
$W^{\pm}\gamma$ parton shower modeling	\checkmark	\checkmark	0.2-1.3%
Background normalization (scale)	-	\checkmark	2.0-16%
Background normalization (PDF)	-	\checkmark	4.2-4.8%

$W + \gamma$: Differential Cross-sections

<u>SMP-20-005</u>

$W + \gamma$: Interference Resurrection

Backup

WZ: Systematics

Source	2016	2017	2018	Correlation scheme	Processes
Electron efficiency	0 - 3.3	0 - 3.0	0 - 2.8	Partially correlated	All MC
Muon efficiency	0 - 2.4	0 - 2.1	0 - 2.0	Partially correlated	All MC
Muon energy scale	0 - 5	0 - 5	0 - 5	Correlated	All MC
Electron energy scale	0 - 5	0 - 5	0 - 5	Correlated	All MC
Trigger efficiency	-1.0/0.6	-0.7/0.6	-0.7/0.6	Partially correlated	All MC
Jet energy scale	0.9	0.7	1.1	Partially correlated	All MC
B-tagging (heavy)	1.0	0.7	0.9	Correlated	All MC
B-tagging (light)	0.5	0.4	0.3	Correlated	All MC
Pileup	0.9	0.8	0.8	Correlated	ALL MC
ISR	0.2 - 20	0.2 - 20	0.2 - 20	Correlated	WZ
Nonprompt norm.	30	30	30	Correlated	nonprompt
VVV norm.	50	50	50	Correlated	VVV
VH norm.	25	25	25	Correlated	VH
WZ VBS norm.	20	20	20	Correlated	WZ VBS
ZZ	Free	Free	Free	Correlated	ZZ
tīZ norm.	Free	Free	Free	Correlated	tīX
tZq norm.	Free	Free	Free	Correlated	tZq
$X\gamma$ norm.	Free	Free	Free	Correlated	$X\gamma^{-}$
Luminosity	2.5	2.3	2.5	Partially correlated	All MC
Statistical uncertainties	By bin	By bin	By bin	Decorrelated	All MC
Theoretical (PDF + Scale)	0.9	0.9	0.9	Correlated	WZ

Category (Source)	Fiducial cross-section
eee(POWHEG)	$62.5 + 2.4 \\ -2.0 \\ -2.0 \\ (scale) \pm 0.9 (PDF) \\ fb$
eee(MATRIX, NNLO QCD)	76.8 ^{+1.8} _{-1.6} (scale)fb
eee(MATRIX, NNLO QCDxNLO EWK)	75.3 ⁺¹⁷ ₋₁₅ (scale)fb
eee(Measured)	$78.6 \pm 4.1(stat.) \pm 3.2(syst.) \pm 1.4(lumi.) \pm 0.7(theo.)$ fb
eeµ(POWHEG)	$62.5 + 2.4_{-2.0}(\text{scale}) \pm 0.9(\text{PDF})\text{fb}$
$ee\mu(MATRIX, NNLO QCD)$	75.3 ^{+1.8} ₋₁₆ (scale)fb
eeµ(MATRIX, NNLO QCDxNLO EWK)	$73.8 + \frac{17}{-15}$ (scale)fb
$ee\mu$ (Measured)	$71.3 \pm 2.9(stat.) \pm 2.2(syst.) \pm 1.3(lumi.) \pm 0.7(theo.)$ fb
$\mu\mu e(POWHEG)$	$62.5 + 2.4 \\ -2.0 \\ -2.0 \\ (scale) \pm 0.9 (PDF) fb$
$\mu\mu e(MATRIX, NNLO QCD)$	75.3 ^{+1.8} _{-1.6} (scale)fb
μμe(MATRIX, NNLO QCDxNLO EWK)	73.8 ^{+1.7} ₋₁₅ (scale)fb
$\mu\mu e$ (Measured)	$74.8 \pm 1.9(\text{stat.}) \pm 2.1(\text{syst.}) \pm 1.4(\text{lumi.}) \pm 0.7(\text{theo.})\text{fb}$
μμμ(POWHEG)	$62.5 + \frac{2.4}{-2.0}$ (scale) ± 0.9 (PDF)fb
$\mu\mu\mu$ (matrix, NNLO QCD)	76.8 ^{+1.8} _{-1.6} (scale)fb
μμμ(MATRIX, NNLO QCDxNLO EWK)	75.3 ^{+1.7} ₋₁₃ (scale)fb
$\mu\mu\mu$ (Measured)	74.9 ± 1.4 (stat.) ± 1.9 (syst.) ± 1.4 (lumi.) ± 0.7 (theo.)fb
Inclusive (POWHEG)	$250.0 + 9.7 \\ -8.0 (scale) \pm 3.5 (PDF) fb$
Inclusive (MATRIX, NNLO QCD)	$304.2_{-6.5}^{+7.3}$ (scale)fb
Inclusive (MATRIX, NNLO QCDxNLO EWK)	298.1 ^{+6.9} _{-6.3} (scale)fb
Inclusive (Measured)	$298.9 \pm 4.8(stat.) \pm 7.7(syst.) \pm 5.4(lumi.) \pm 2.7(theo.) fb$

$$\sigma_{\rm fid}(pp \to WZ) = \frac{N_{\rm SR}}{\epsilon \mathcal{L}} \left(\frac{N_{\rm fid}^{\rm SR}}{N_{\rm tot}^{\rm SR}} \right)$$
$$\sigma_{\rm tot}(pp \to WZ) = \frac{N_{\rm SR}}{{\sf BR}(W \to l\nu) \, {\sf BR}(Z \to l'\bar{l}') \, {\cal A}\epsilon \mathcal{L}} \left(\frac{N_{\rm fid}^{\rm SR}}{N_{\rm tot}^{\rm SR}} \right)$$

CD

Quantity	eee	eeµ	μμе	μμμ	Inclusive
Efficiency	0.0507 ± 0.0006	0.1044 ± 0.0008	0.2166 ± 0.0011	0.4582 ± 0.0013	0.2074 ± 0.0005
Acceptance	0.0447 ± 0.0001	0.0448 ± 0.0001	0.0448 ± 0.0001	0.0446 ± 0.0001	0.1789 ± 0.0002
$N_{fid}^{SR} / N_{tot}^{SR}$	0.950 ± 0.002	0.952 ± 0.001	0.946 ± 0.001	0.948 ± 0.001	0.949 ± 0.001

Category Fiducial cross-section eee+ (POWHEG) $36.7 + 1.3_{0.0}(scale) \pm 0.7(PDF)fb$ 45.2 ^{+1.1}_{-0.9}(scale)fb eee+ (MATRIX, NNLO OCD) 44.3 ^{+1.0}_{-0.9}(scale)fb eee+ (MATRIX, NNLO OCDXNLO EWK) eee+ (Measured) $49.3 \pm 3.4(\text{stat.}) \pm 1.9(\text{syst.}) \pm 1.0(\text{lumi.}) \pm 0.5(\text{theo.})\text{fb}$ eeu+ (POWHEG) $36.7 + 1.3 \\ -0.9 \\ -0.9 \\ (scale) \pm 0.7 (PDF) \\ fb$ eeu⁺ (MATRIX, NNLO OCD) 44.3 ^{+1.0}_{-0.9}(scale)fb 43.3 ^{+1.0}_{-0.9}(scale)fb eeu+ (MATRIX, NNLO OCDXNLO EWK) eeu+ (Measured) $41.5 \pm 1.9(\text{stat.}) \pm 1.6(\text{syst.}) \pm 0.9(\text{lumi.}) \pm 0.4(\text{theo.})\text{fb}$ $36.7^{+1.3}_{-0.0}(scale) \pm 0.7(PDF)fb$ uue+ (POWHEG) uue⁺ (MATRIX, NNLO OCD) 44.3 ^{+1.0}_{-0.9}(scale)fb uue+ (MATRIX, NNLO OCDXNLO EWK) 43.3 ^{+1.0}_{-0.9}(scale)fb $\mu\mu e^+$ (Measured) 43.1 ± 1.4(stat.) ± 1.5(syst.) ± 0.9(lumi.) ± 0.4(theo.)fb $36.7^{+1.3}_{-0.9}(\text{scale}) \pm 0.7(\text{PDF})\text{fb}$ uuu+ (POWHEG) 45.2 ^{+1.1}_{-0.9}(scale)fb uuu⁺ (MATRIX, NNLO OCD) 44.3 +1.0 (scale) fb uuu+ (MATRIX, NNLO OCDXNLO EWK) $\mu\mu\mu^+$ (Measured) $44.3 \pm 1.0(\text{stat.}) \pm 1.5(\text{syst.}) \pm 1.0(\text{lumi.}) \pm 0.4(\text{theo.})\text{fb}$ 146.9 ± 2.1 (scale) ± 2.1 (PDF) fb Inclusive (+) (POWHEG) 179.0 ^{+4.3}/_{-3.8}(scale)fb Inclusive (+) (MATRIX, NNLO OCD) 1.76 ^{+0.08}_{-0.08}(scale)fb Inclusive (+) (MATRIX, photon induced) 175.3 +4.1 (scale)fb Inclusive (+) (MATRIX, NNLO OCDxNLO EWK) $175.9 \pm 3.0(\text{stat.}) \pm 5.6(\text{syst.}) \pm 3.6(\text{lumi.}) \pm 1.7(\text{theo.})\text{fb}$ Inclusive (+) (Measured)

Category 25.8 +0.9 (scale) ± 0.6 (PDF)fb eee⁻ (POWHEG) 31.6 +0.8 -0.7(scale)fb eee⁻ (MATRIX, NNLO OCD) 31.0 +0.7 (scale) fb eee- (MATRIX, NNLO OCDXNLO EWK) 36.2 ± 3.3(stat.) ± 1.4(syst.) ± 0.7(lumi.) ± 0.3(theo.)fb eee⁻ (Measured) $25.8^{+0.9}_{-0.6}$ (scale) ± 0.6 (PDF)fb eeu^{-} (POWHEG) 31.0 +0.8 (scale) fb eeu- (MATRIX, NNLO OCD) $30.4^{+0.7}_{-0.6}$ (scale)fb eeu⁻ (MATRIX, NNLO OCDXNLO EWK) $29.7 \pm 1.7(\text{stat.}) \pm 1.1(\text{syst.}) \pm 0.6(\text{lumi.}) \pm 0.3(\text{theo.})\text{fb}$ eeu⁻ (Measured) $25.8^{+0.9}_{-0.6}$ (scale) ± 0.6 (PDF)fb uue- (POWHEG) 31.0 ^{+0.8}_{-0.7}(scale)fb uue⁻ (MATRIX, NNLO OCD) $30.4^{+0.7}_{-0.6}(scale)$ fb HUR (MATRIX, NNLO OCDXNLO EWK) uue⁻ (Measured) $31.8 \pm 1.4(\text{stat.}) \pm 1.1(\text{syst.}) \pm 0.6(\text{lumi.}) \pm 0.3(\text{theo.})\text{fb}$ $25.8^{+0.9}_{-0.6}$ (scale) ± 0.6 (PDF)fb $\mu\mu\mu^{-}$ (POWHEG) uuu- (MATRIX, NNLO OCD) 31.6 ^{+0.8}_{-0.7}(scale)fb 31.0 + 0.7 (scale) fbuuu⁻ (MATRIX, NNLO OCDXNLO EWK) uuu⁻ (Measured) $30.7 \pm 0.9(\text{stat.}) \pm 1.0(\text{syst.}) \pm 0.7(\text{lumi.}) \pm 0.3(\text{theo.})\text{fb}$ $103.1^{+4.0}(scale) \pm 1.4(PDF)fb$ Inclusive (-) (POWHEG) Inclusive (-) (MATRIX, NNLO QCD) 125.2 ^{+4.3}_{-3.8}(scale)fb 122.8 +4.1 (scale) fb Inclusive (-) (MATRIX, NNLO OCDXNLO EWK) Inclusive (-) (Measured) $124.8 \pm 2.7(\text{stat.}) \pm 4.0(\text{syst.}) \pm 2.5(\text{lumi.}) \pm 1.1(\text{theo.})\text{fb}$

NNPDF30_nlo_as118 : one-sided p=0.747

$V\gamma\gamma$: Event Selection, Yields and Systematics

	\geq	2 photons: p_T	>	20 GeV, $ \eta $	<	2.5
--	--------	------------------	---	------------------	---	-----

- ▶ $p_T^{e/\mu}$ > 15 GeV, $|\eta^e|$ < 2.5, $|\eta^\mu|$ < 2.4
- $\Delta R(\gamma, \gamma/l) > 0.4$
- $|m_{e\gamma} m_Z| > 5 \,\text{GeV}, |m_{e\gamma\gamma} m_Z| > 5 \,\text{GeV}$
- $W\gamma\gamma$: 1 lepton, $p_T^{e(\mu)} > 35(30)$ GeV
- ► $Z\gamma\gamma$: 2 same-flavor leptons, $p_T^{e(\mu)} > 35(30)$ GeV, $m_{||} > 55$ GeV

	Process	eν	$e\gamma\gamma$		$\mu \nu_{\mu} \gamma \gamma$		
	Misid. jets	918 ± 23 (sta	$(t) \pm 180 (syst)$	1441 ± 2	$7 (\text{stat}) \pm 280$	(syst)	
	Misid. electrons	669 ± 28 (st	at) ± 34 (syst)	$107 \pm$	$9 ({ m stat}) \pm 7 ({ m stat})$	yst)	
	Others	217 ± 11 (st	at) ± 20 (syst)	$286 \pm 1^{\circ}$	$1 \text{ (stat)} \pm 25 \text{ (stat)}$	(syst)	
	Total backgrounds	1804 ± 38 (st	at) \pm 180 (syst)	1834 ± 3	$0 (\text{stat}) \pm 280$	(syst)	
	Expected signal	248 ± 6 (sta	it) ± 17 (syst)	500 ± 8	$(stat) \pm 33$ (syst)	
	Total prediction	2052 ± 38 (st	at) ± 180 (syst)	2334 ± 3	$1 (\text{stat}) \pm 280$	(syst)	
	Data	1	987		2384		
	Process	ee	$\gamma\gamma$		μμγγ		
	Misid. jets	42 ± 4 (sta	it) \pm 9 (syst)	98 ± 5	$(\text{stat}) \pm 27 (\text{stat})$	yst)	
	Others	6 ± 1 (sta	t) ± 1 (syst)	11 ± 2	$(\text{stat}) \pm 1$ (s	yst)	
	Total backgrounds	48 ± 4 (sta	t) \pm 9 (syst)	$109 \pm \epsilon$	$(\text{stat}) \pm 27$ (syst)	
	Expected signal	68 ± 2 (sta	it) \pm 5 (syst)	157 ± 3	$(\text{stat}) \pm 11$ (syst)	
	Total prediction	116 ± 4 (st	at) \pm 8 (syst)	266 ± 6	$(\text{stat}) \pm 23$ (syst)	
	Data	1	10		272		
Systen	natic source	eν _e γγ [%]	$\mu \nu_{\mu} \gamma \gamma [\%]$	$\ell \nu \gamma \gamma [\%]$	$ee\gamma\gamma$ [%]	$\mu\mu\gamma\gamma$ [%]	$\ell\ell\gamma\gamma$ [%]
Integrate	ed luminosity	<1	2	2	3	1	3
P	'ile-up	2	$<\!1$	< 1	2	< 1	1
Electron	n efficiencies	4		< 1	3		1
Muon	efficiencies	1	< 1	$<\!1$	2	< 1	1
Photor	efficiencies	18	13	12	6	5	5
Jet-ph	oton misid.	25	22	21	6	5	6
Electron-	photon misid.	4	<1	< 1		_	_
$W\gamma$ theoret	ical cross section	3	3	3	$<\!1$	< 1	< 1
$Z\gamma$ theoreti	cal cross section	4	< 1	< 1	7	5	6
er bkgs the	oretical cross section	5	2	2	$<\!\!1$	$<\!1$	<1
imulated sa	mple event count	18	7	8	7	3	4

Oth S $V\gamma\gamma: p_T^{\gamma\gamma}$

SMP-19-013 (Submitted to J.HighEnerg.Phys.)

Cross Section	Theoretical (fb) MadGraph5_aMC@NLO	Measured (fb)	Significance Obs. (Exp.)
$W\gamma\gamma$	18.70 \pm 0.03 (MC stat) \pm 0.12 (PDF+scale)	$13.6^{+1.9}_{-1.9}$ (stat) $^{+4}_{-4}$ (syst) \pm 0.08 (PDF+scale)	$3.1(4.5)\sigma$
$Z\gamma\gamma$	5.96 \pm 0.01 (MC stat) \pm 0.06 (PDF+scale)	$5.41^{+0.58}_{-0.55}$ (stat) $^{+0.64}_{-0.70}$ (syst) \pm 0.06 (PDF+scale)	4.8(5.8) σ

