Recent observation and measurements of vector-boson fusion and scattering with ATLAS

July 26, 2021 **Dag Gillberg, Carleton University On behalf of the ATLAS Collaboration European Physics Society conference on high energy physics**, 2021

VBF

Carleton University

The VBF and VBS processes

- - Probes gauge bosons self-interaction and electroweak symmetry breaking
- Sensitive to many new physics scenarios; crucial input to for EFT studies
 - Tests anomalous triple and quartic gauge couplings (aTGC and aQGC)

• Vector boson fusion and scattering are characterized by a triple or quartic gauge vertex • Although very challenging and vast data required, now benchmark SM measurements

The VBF and VBS signatures \boldsymbol{V} production, to which the VBF and VBS diagrams contribute VBF non-VBF dijet system jet 2 Angular view Φ \circ_V especially in **rapidity gap** between two leading jets (N_{iets}^{gap}) dijet system (*jj*) jet 2 6. $p_{\rm T}$ of (di)boson and dijet system similar + back-to-back in ϕ "Gap region"

- VBF and VBS cannot be probed in isolation
- The standard approach is to study **EW** *Vjj* and **EW** *VVjj*

- Rare processes but distinct topology:
 - 1. Large rapidity gap between jets Δy_{ij}
 - 2. Large dijet invariant mass m_{ii}
 - 3. Little hadronic activity (few extra jets),
 - 4. Low p_T (or lack) of third jet / low p_T of (*V*)*Vjj* system
 - 5. Boost (rapidity) of (di)boson and dijet system similar *

* Centrality: $\xi \approx (y_{V(V)} - y_{jj}) / \Delta y_{jj}$

 Δy_{jj}

The VBF and VBS signatures

- VBF and VBS cannot be probed in isolation
- The standard approach is to study **EW** *Vjj* an pro

EV Ra 1. $p \longrightarrow p$ 2. $\gamma \longrightarrow w \longrightarrow v$ $\gamma \longrightarrow v$ $\gamma \longrightarrow v$

- 3. Little hadronic activity (few extra jets), especially in rapidity gap between two leading
- New way to probe VBS at LHC (2021)
 - Photon induced *VV* production: $\gamma \gamma \rightarrow WW$
 - No forward jets; Very clean, but very rare

VBF and VBS measurements at ATLAS

- Electroweak *Vj* and *VVii* and $\gamma\gamma \rightarrow WW$ production are all very rare
- Rate relative to inel. $pp \to X$
 - $\sigma_{Zjj} / \sigma_{inel} \approx 10^{-12}$ $\sigma_{ZZjj} / \sigma_{inel} \approx 10^{-14}$

- Challenging analysis: Small signal swamped by backgrounds; often poorly modelled
- 5σ observation for WWjj, WZjj, ZZjj etc.

VBF and VBS measurements at ATLAS

- Summary of ATLAS measurements targeting VBF and VBS
- The following slides presents a selected subset of four recent Run-2 results:
 - EW *Zjj* **EPJC 81 (2021) 163**
 - EW $Z(\rightarrow \ell \ell) \gamma j j$ <u>ATLAS-CONF-2021-038</u>
 - EW $Z(\rightarrow \nu \nu)\gamma jj$ **CERN-EP-2021-137**
 - EW ZZjj arXiv:2004.10612

References to all these results can be found in the backup slides + slide on $\gamma\gamma \rightarrow WW$ observation, <u>PLB 816 (2021) 136190</u>

Measurement of EW Zij (1/3)

- EW Zjj was first observed by ATLAS using Run-1 data <u>JHEP 04 (2014) 031</u>
- With the full Run-2 dataset, differential cross sections are measured for four characteristic observables
 - Dijet mass m_{ii} and rapidity separation Δy_{ii}
 - Signed azimuthal dijet separation $\Delta \phi_{ii}$ and $p_{T,\ell\ell}$
- $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ data, $p_T^{j1} > 85 \text{ GeV}, m_{jj} > 1000 \text{ GeV}$
- Main challenge: separate strong *Zjj* and *EW Zjj*
- Strong *Zij* poorly modelled in VBF topology region • EW Zjj enhanced signal region using VBF topology cuts • Control regions used to constrain strong *Zjj* prediction

 - Likelihood fit measures EW *Zjj* bin-by-bin

<u>CERN-EP-2020-045, arXiv:2006.15458</u>, <u>EPJC 81 (2021) 163</u>

Measurement of EW Zjj (2/3)

<u>CERN-EP-2020-045</u>, <u>arXiv:2006.15458</u>, <u>EPJC 81 (2021) 163</u>

Measurement of EW Zij (3/3)

- Measurements compared to various MC prediction → Guidance on generator choice; refinement of parameter settings
- Differential cross sections are used to set limits on BSM models using an EFT framework
 - $\Delta \phi_{ii}$ is CP-odd and very sensitive to certain Wilson coefficients (c_W)

<u>CERN-EP-2020-045</u>, <u>arXiv:2006.15458</u>, <u>EPJC 81 (2021) 163</u>

• Measured event yields are corrected to particle level (Iterative Bayesian unfolding) Impact from BSM modifications on the

measured EW Zjj differential cross sections ATLAS Simulation $\sqrt{s} = 13 \text{ TeV}, \text{ EW } Z j j \rightarrow I l j j$ SM $--2\text{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6})$ $--|\mathcal{M}_{d6}|^2 + 2\text{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6})$ $|\mathcal{M}_{d6}|^2$ $0.3 \quad \frac{c_{\rm W} / \Lambda^2 = 0.2 \, {\rm TeV}^{-2}}{2}$ Ratio 0.0 -0.3 $0.3 \quad \tilde{c}_{\rm W} / \Lambda^2 = 0.2 \, {\rm TeV^{-2}}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $N_{\rm iets}^{\rm gap} = 0, \ \xi_Z < 0.5 \ ({\rm EW} \ {\rm SR})$ 0.0 Data, stat. unc -0.3 Total unc $C_{\rm HWB} / \Lambda^2 = 1.8 \, {\rm TeV}^{-2}$ 0.3 0.0 -0.3 $\tilde{c}_{\rm HWB}$ / $\Lambda^2 = 1.8 \, {\rm TeV}^{-2}$ 0.3 0.0 -0.3 [3.0, [4.5, [2.6, [2.6, [3.1, [3.6, [3.6, [3.9, [3.9, [5.0, [5.0, [5.0, 2 3 m_{jj} [TeV] *p*_{⊤, II} [GeV] $|\Delta y_{jj}|$ $\Delta \phi_{jj} = \phi_{j1} - \phi_{j2}$, where $y_{j1} > y_{j2}$ $\Delta \phi_{
m jj}$

- EW ZZjj: very rare; unique sensitivity to non-SM quartic 4-Z coupling
- Main challenge: separate from strong ZZjj production
- Analysis:
 - Decay channels: $ZZjj \rightarrow 4\ell jj$ and $ZZjj \rightarrow \ell\ell \nu \nu jj$
 - Preselection: typical $ZZ(4\ell, \ell\ell\nu\nu)$ topology, *b*-jet veto (reduce $t\bar{t}$), loose VBF topo. selection ($m_{ii}, \Delta y_{ii}$)
- Following preselection, BDTs are used to[™] separate EW ZZjj from backgrounds
- EW and strong *Zjj* measurements:
 - $\mu_{\rm EW} = 1.35 \pm 0.34$ $\mu_{\rm strong} = 0.96 \pm 0.22$
 - EW ZZjj significance: 5.5σ (4.3 σ expected)
 - EW+strong fiducial cross sections measured for 4*l* jj and *l* l v v jj separately

- EW Zyjj is measured in the *eeyjj* and *µµyjj* channels
- Analysis targets VBF topology + $Z \rightarrow \ell \ell + \gamma$: $p_{\rm T}^{j1} > 50 \,{\rm GeV}, p_{\rm T}^{j2} > 50 \,{\rm GeV}, p_{\rm T}^{\gamma} > 25 \,{\rm GeV}, m_{jj} > 150 \,{\rm GeV}, \Delta y_{jj} > 1$ $m_{\ell\ell} > 40 \text{ GeV}, \text{ and } m_{\gamma\ell\ell} + m_{\ell\ell} > 2 m_Z (\text{veto } Z \to \gamma \ell \ell)$
- Main backgrounds: Strong $Z\gamma jj$, Z+jets with fake γ , $t\bar{t}\gamma$
- Key observable: $Z\gamma$ centrality $\zeta_{\ell\ell\gamma}$; **SR**: $\zeta_{\ell\ell\gamma} < 0.4$
- Fit performed to *m*_{*ii*} spectrum
- Observation of EW $Z(\ell \ell) \gamma i j$ with significance well above $5\sigma ~(\sim 10\sigma)$
 - Fiducial cross section is measured: $\sigma_{\rm EWZ\gamma}^{\rm fid} = 4.49 \pm 0.58 \,{\rm fb}, \sigma_{\rm EWZ\gamma}^{\rm pred} = 4.73 \pm 0.27 \,{\rm fb}$
- The strong+EW $Z\gamma jj$ cross section is measured to be: $20.6^{+1.4}_{-1.2}$ fb (predicted: $20.4^{+2.6}_{-2.0}$ fb)

ATLAS-CONF-2021-038

Observation of EW $Z(\ell \ell) \gamma j j$

10

- First observation of EW $Z(\nu\nu)\gamma jj$
- Strategy: target VBF topology+ E_{T}^{miss} : $p_{\rm T}^{j1} > 60 \text{ GeV}, p_{\rm T}^{j2} > 50 \text{ GeV}, \Delta \phi_{jj} < 2.5,$ $N_{\gamma} = 1, N_{\ell} = 0, m_{ii} > 250 \text{ GeV}, \gamma \text{ between jets}$
- Multiple control regions to constrain backgrounds
- EW $Z(\nu\nu)\gamma jj$ signal established with 5.2 σ (5.1σ) observed (expected) significance
 - Measurements: EW $\mu_{Z\nu} = 1.03 \pm 0.25$ $\sigma_{\rm fid} = 1.31 \pm 0.29 \,\rm fb$
- In addition to EW *Zγjj* measurements, also sets limits on invisible / partially inv. decays of a Higgs boson (VBF $H \rightarrow$ invisible)

CERN-EP-2021-137, EXOT-2021-17

- Precision measurements of processes that probes VBF and VBS provides:
 - Important test of EWSB
 - Sensitivity to searches for new phenomena (BSM)
 - Crucial input to EFT fits
- Typically, the associated cross sections are very small \rightarrow small signal swamped by large, challenging backgrounds
 - Precision analyses only recently possible due to large dataset required
 Most measurements are statistical imited
 - Most measurements are statistics limited
- 5σ observation established for major VBF and VBS sensitive processes & channels
 - Focus shifting to precision differential cross section measurements
- Exciting times ahead with the larger datasets of Run 3 and beyond

Backup slides

See Savannah Clawson's talk on photon fusion, Thursday

Observation of *yy*

- Photon-photon scattering
 - Incoming protons intact or fragment outside acceptance
 - $WW \rightarrow e\nu\mu\nu$ channel **very clean**; *p* opposite charged ℓ , no other tracks
- Analysis selects $\ell^{\pm} \ell^{\mp}$ events, fulfilling: $p_{\rm T}^{\ell 1} > 27 \text{ GeV}, p_{\rm T}^{\ell 2} > 20 \text{ GeV}, m_{\ell \ell} > 30 \text{ GeV}, \text{SR}: p_{\rm T}^{e\mu} > 30 \text{ GeV}$
 - Count tracks within 1 mm of *ll* primary vertex
 - Expect $n_{trk} = 0$ additional tracks from $\gamma \gamma \rightarrow WW$
 - Backgrounds constrained using CRs: $p_{\rm T}^{e\mu} < 30 \text{ GeV and } n_{\rm trk} \ge 1$
- Background-only hypothesis rejected with 8.4σ significance
- $\sigma_{\rm fid} = 3.13 \pm 0.31 \,(\text{stat}) \pm 0.28 \,(\text{syst})$

VBF, VBS, and T	Friboson Cross Section Measurements Status: July 2021	∫£ dt Be	ference
			(2018) 55
γγγ	$\sigma = 72.6 \pm 6.5 \pm 9.2 \text{ fb} \text{ (data)}$ NNLO (theory)	20.2 JHEP	2002 (2020) 057
$Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma$		20.3 PRD 9	33, 112002 (2016)
$-[n_{jet}=0]$	$\sigma = 3.48 + 0.61 - 0.56 + 0.3 - 0.26 \text{ fb (data)}$ MCFM NLO (theory)	20.3 PRD 9	3, 112002 (2016)
$W\gamma\gamma \rightarrow \ell \nu\gamma\gamma$	$\sigma = 6.1 + 1.1 - 1 \pm 1.2 \text{ fb (data)} \qquad \sqrt{s} = 7,8,13 \text{ TeV}$	20.3 PRL 1	15, 031802 (2015)
$-[n_{jet}=0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1 - 0.9 \text{ fb (data)}$	20.3 PRL 1	15, 031802 (2015)
WW $\gamma \rightarrow e \nu \mu \nu \gamma$	$\sigma = 1.5 \pm 0.9 \pm 0.5 \text{ fb (data)} \\ \text{VBFNLO+CT14 (NLO) (theory)} $	20.2 EPJC	77 (2017) 646
W/W/W/ (tot)	$\sigma = 0.848 \pm 0.098 \pm 0.081 \text{ pb (data)}$ NLO QCD (theory)	139 ATLAS	3-CONF-2021-039
	$\sigma = 230 \pm 200 + 150 - 160 \text{ fb (data)}$ Madgraph5 + aMCNLO (theory)	20.3 EPJC	77 (2017) 141
– WWW→ℓvℓvjj	$\sigma = 0.24 + 0.39 - 0.33 \pm 0.19$ fb (data) Madgraph5 + aMCNLO (theory)	20.3 EPJC	77 (2017) 141
$-WWW \rightarrow \ell \nu \ell \nu \ell \nu$	σ = 0.31 + 0.35 - 0.33 + 0.32 - 0.35 fb (data) Madgraph5 + aMCNLO (theory)	20.3 EPJC	77 (2017) 141
WWZ , (tot.)	$\sigma = 0.55 \pm 0.14 + 0.15 - 0.13 \text{ pb (data)}$ Sherpa 2.2.2 (theory)	79.8 PLB 7	98 (2019) 134913
	$\sigma = 4 \pm 0.5 \pm 0.4 \text{ pb (data)}$ LHC-HXSWG (theory)	139 ATLAS	S-CONF-2020-027
	$\sigma = 2.43 + 0.5 - 0.49 + 0.33 - 0.26 \text{ pb (data)}$ LHC-HXSWG YR4 (theory)	20.3 EPJC	76 (2016) 6
	$\sigma = 0.79 + 0.11 - 0.1 + 0.16 - 0.12 \text{ pb (data)}$ NNLO QCD and NLO EW (theory) $LHC pp \sqrt{s} = 13 \text{ IeV}$	139 ATLAS	S-CONF-2021-014
	σ = 0.51 + 0.17 - 0.15 + 0.13 - 0.08 pb (data) Data	20.3 PRD 9	92, 012006 (2015)
	$\sigma = 65.2 \pm 4.5 \pm 5.6 \text{ fb (data)}$ LHC-HXSWG (theory) $Stat \oplus syst$	139 ATLA	S-CONF-2019-029
$-\mathbf{H}(\rightarrow \gamma \gamma)\mathbf{j}\mathbf{j} \ VBF$	$\sigma = 42.5 \pm 9.8 + 3.1 - 3 \text{ fb (data)}$ LHC-HXSWG (theory)	20.3 ATLAS	S-CONF-2015-060
	$\sigma = 49 \pm 17 \pm 6 \text{ fb (data)}$ LHC pp $\sqrt{s} = 8 \text{ TeV}$	4.5 ATLA	S-CONF-2015-060
Wjj EWK $(M(jj) > 1 \text{ TeV})$	$\sigma = 43.5 \pm 6 \pm 9 \text{ fb (data)}$ Powheg+Pythia8 NLO (theory) Data	20.2 EPJC	77 (2017) 474
$M(::) > EOO(C_{-})/$	$\sigma = 159 \pm 10 \pm 26 \text{ fb (data)}$ Powheg+Pythia8 NLO (theory) Stat	20.2 EPJC	77 (2017) 474
- IVI(JJ) > 500 GeV	$\sigma = 144 \pm 23 \pm 26 \text{ fb (data)}$ Powheg+Pythia8 NLO (theory)	4.7 EPJC	77 (2017) 474
	$\sigma = 37.4 \pm 3.5 \pm 5.5 \text{ fb (data)}$ Herwig7+VBFNLO (theory) $LHC pp \sqrt{s} = 7 \text{ TeV}$	139 EPJC	81 (2021) 163
	$\sigma = 10.7 \pm 0.9 \pm 1.9 \text{ fb (data)}$ PowhegBox (NLO) (theory) Data	20.3 JHEP	04, 031 (2014)
	$\sigma = 4.49 \pm 0.4 \pm 0.42 \text{ fb (data)}$ Madgraph5 + aMCNLO (theory) $stat$	139 ATLA	S-CONF-2021-038
	$\sigma = 1.1 \pm 0.5 \pm 0.4 \text{ fb (data)}$ VBENLO (theory) $Stat \oplus SYSt$	20.3 JHEP	07 (2017) 107
	$\sigma = 3.13 \pm 0.31 \pm 0.28 \text{ fb (data)}$ MG5 aMCNL O+Pythia8 × Sury, Fact (0.82) (theory)	139 PLB 8	16 (2021) 136190
$\gamma \gamma \rightarrow \mathbf{V} \mathbf{V} \mathbf{V}$	$\sigma = 6.9 \pm 2.2 \pm 1.4 \text{ fb (data)}$ HEBWIG++ (theory)	20.2 PRD 9	94 (2016) 032011
(WV+ZV)ii EWK	$\sigma = 45.1 \pm 8.6 + 15.9 - 14.6 \text{ fb (data)}$ Madgraph5 + aMCNL O + Pythia8 (theory)	35.5 PRD	100, 032007 (2019)
	$\sigma = 2.89 + 0.51 - 0.48 + 0.29 - 0.28 \text{ fb (data)}$	36.1 PRL 1	23, 161801 (2019)
VV [±] VV [±] JJ EVVK	$\sigma = 1.5 \pm 0.5 \pm 0.2 \text{ fb (data)}$	20.3 PRD 9	96, 012007 (2017)
	$\sigma = 0.57 + 0.14 - 0.13 + 0.07 - 0.05 \text{ fb (data)}$	36 1 PLB 7	/93 92019) 469
	$\sigma = 0.29 + 0.14 - 0.12 + 0.09 - 0.1 \text{ fb (data)}$	20.3 PRD 9	93. 092004 (2016)
ZZii EWK	$\sigma = 0.82 \pm 0.18 \pm 0.11 \text{ fb} \text{ (data)}$	139 arXiv:	2004.10612 [hep-ex
	00 05 10 15 20 25 30	35	
	data/theo	or y	

EW Zjj/VVjj measurement in global BSM fits

• The ATLAS EW Zjj measurements helps constrain C_W in particular

Top, Higgs, Diboson and Electroweak Fit to the Standard Model Effective Field Theory

John Ellis, a,b,c Maeve Madigan, d Ken Mimasu, a Veronica Sanz e,f and Tevong You b,d,g

arXiv:2012.02779, JHEP 04 (2021) 279

Zjj: Generators, cutflow, fid. def

Process	Generator	ME accuracy	PDF	Shower and hadronisation	Parameter set
EW Zjj	Powheg-Box v1	NLO	CT10nlo	Pythia8 + EvtGen	AZNLO
	Herwig7 + Vbfnlo	NLO	MMHT2014lo	Herwig7 + EvtGen	default
	Sherpa 2.2.1	LO (2–4j)	NNPDF3.0nnlo	Sherpa	default
Strong Zjj	Sherpa 2.2.1	NLO (0–2j), LO (3–4j)	NNPDF3.0nnlo	Sherpa	default
	MadGraph5_aMC@NLO	NLO (0–2j), LO (3–4j)	NNPDF2.3nlo	Pythia8 + EvtGen	A14
_	MadGraph5	LO (0-4j)	NNPDF3.01o	Pythia8 + EvtGen	A14
VV	Sherpa	NLO (0–1j), LO (2–3j)	NNPDF3.0nnlo	Sherpa	default
tī	Powheg-Box v2 hvq	NLO	NNPDF3.0nnlo	Pythia8 + EvtGen	A14
VVV	Sherpa	LO (0–1j)	NNPDF3.0nnlo	Sherpa	default
W+jets	Sherpa	NLO (0–2j), LO (3–4j)	NNPDF3.0nnlo	Sherpa	default

Sample	$Z \rightarrow ee$	$Z \rightarrow \mu \mu$
Data	10870	12 125
EW Zjj (Powheg+Py8)	$2670 \pm 120 \pm 280$	$2740 \pm 120 \pm$
EW Zjj (Sherpa)	$1280 \pm 60 \pm 140$	$1350 \pm 60 \pm$
EW Zjj (Herwig7+Vbfnlo')	$2290 \pm 100 \pm 210$	$2350 \pm 100 \pm$
Strong Zjj (Sherpa)	$13500\pm 600\pm 4500$	$15100\pm600\pm100$
Strong Zjj (MG5+Py8)	$13140 \pm 480 \pm \text{N/A}$	$14810 \pm 540 \pm$
Strong Zjj (MG5_NLO+Py8')	$8800 \pm 300 \pm 1000$	$10000 \pm 400 \pm$
$ZV (V \rightarrow jj)$	$179 \pm 8 \pm 6$	$178 \pm 8 \pm$
Other VV	$45 \pm 2 \pm 2$	$45 \pm 2 \pm$
$t\bar{t}$, single top	$92 \pm 8 \pm 6$	$98 \pm 8 \pm$
$W(\rightarrow \ell \nu)$ +jets, $Z(\rightarrow \tau \tau)$ +jets	negligible	negligible

Dressed muons	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.4
Dressed electrons	$p_{\rm T} > 25$ GeV and $ \eta < 2.37$ (excluding $1.37 < \eta < 1.52$)
Jets	$p_{\rm T} > 25 \text{ GeV and } y < 4.4$
VBF topology	$N_{\ell} = 2$ (same flavour, opposite charge), $m_{\ell\ell} \in (81, 101)$ GeV
	$\Delta R_{\min}(\ell_1, j) > 0.4, \ \Delta R_{\min}(\ell_2, j) > 0.4$
	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{j1} > 85 \text{ GeV}, \ p_{\text{T}}^{j2} > 80 \text{ GeV}$
	$p_{T,\ell\ell} > 20 \text{ GeV}, \ p_T^{\text{bal}} < 0.15$
	$m_{jj} > 1000 \text{ GeV}, \Delta y_{jj} > 2, \xi_Z < 1$
CRa	VBF topology $\oplus N_{jets}^{gap} \ge 1$ and $\xi_Z < 0.5$
CRb	VBF topology $\oplus N_{jets}^{gap} \ge 1$ and $\xi_Z > 0.5$
CRc	VBF topology $\oplus N_{jets}^{gap} = 0$ and $\xi_Z > 0.5$
SR	VBF topology $\oplus N_{\text{jets}}^{\text{gap}} = 0$ and $\xi_Z < 0.5$

Modelling issues for strong backgrounds

Sherpa and (LO) MG5+Py8 over predict the strong *Zjj* contribution after VBF topology selection

Likelihood fit for EW Zjj signal extraction

$$\ln \mathcal{L} = -\sum_{r,i} v_{ri}(\boldsymbol{\theta}) + \sum_{r,i} N_{ri}^{\text{data}} \ln v_{ri}(\boldsymbol{\theta}) - \sum_{s} \frac{\theta_s^2}{2},$$

$$v_{ri} = \mu_i v_{ri}^{\text{EW,MC}} + v_{ri}^{\text{strong}} + v_{ri}^{\text{other,MC}},$$

$$v_{\text{CRa},i}^{\text{strong}} = b_{\text{L},i} v_{\text{CRa},i}^{\text{strong},\text{MC}}, \qquad v_{\text{CRb},i}^{\text{strong}} = b_{\text{H},i} v_{\text{CRb},i}^{\text{strong},\text{MC}}, \\ v_{\text{SR}i}^{\text{strong}} = b_{\text{L},i} f(x_i) v_{\text{SR},i}^{\text{strong},\text{MC}}, \qquad v_{\text{CRc},i}^{\text{strong}} = b_{\text{H},i} f(x_i) v_{\text{CR}}^{\text{strong},\text{MC}},$$

20 bins, 5 POIs, 12 free parameter that constrain strong *Zjj* (5+5+2)

EW Zjj uncertainties

Zjj: EFT fit and HEP-data

Ratio to SM

Wilson	Includes	95% confidence	95% confidence interval [TeV ⁻²]		
coefficient	$ \mathcal{M}_{ m d6} ^2$	Expected	Observed		
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%	
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%	
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%	
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%	
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%	
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%	
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%	
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%	

EW Z <i>j j</i> SR , m_{ii} cross-section measurements									
$d\sigma / dm_{ii}$ [ab/GeV]	-	-	-	-	41	14	5.5	1.3	0.10
Stat. unc. [%]	-	-	-	-	13	13	13	17	26
Gen. choice [%]	-	-	-	-	11	11	9.4	14	7.6
Theory syst. [%]	-	-	-	-	8.1	6.6	4.3	3.1	1.2
Jet syst. [%]	-	-	-	-	8.4	6.9	6.3	9.4	14
Unfolding syst. [%]	-	-	-	-	2.3	1.1	0.7	0.6	0.6
Other syst. [%]	-	-	-	-	2.0	2.0	2.3	2.2	3.0
Inclusive Z j j SR, n	i _{jj} cros	s-sectio	n meas	sureme	nts				
$d\sigma / dm_{jj}$ [ab/GeV]	510	1040	700	320	120	31	8.8	1.7	0.12
Stat. unc. [%]	1.6	1.0	0.9	1.3	1.5	2.3	4.5	7.2	21
Jet syst. [%]	5.2	3.8	3.3	3.6	3.6	3.5	4.1	6.6	15
Unfolding syst. [%]	2.3	1.6	0.9	0.6	0.5	0.4	0.5	0.6	0.6
Other syst. [%]	2.8	2.8	2.8	2.8	2.8	2.8	2.9	2.9	3.4
Inclusive Z j j CRa,	m _{jj} cr	oss-sect	ion me	asurem	nents				
$d\sigma / dm_{jj}$ [ab/GeV]	250	610	560	320	130	37	8.7	1.6	0.10
Stat. unc. [%]	2.2	1.2	1.0	1.3	1.3	2.1	4.4	7.3	22
Jet syst. [%]	11	11	9.4	8.6	8.6	8.1	9.9	11	14
Unfolding syst. [%]	6.7	5.3	4.1	3.3	2.7	2.6	3.0	3.9	5.3
Other syst. [%]	2.3	2.3	2.3	2.4	2.4	2.5	2.5	2.6	2.8
Inclusive Z j j CRb,	<i>m_{jj}</i> cr	oss-sect	ion me	asuren	nents				
$d\sigma / dm_{jj}$ [ab/GeV]	190	430	330	150	54	10	1.4	0.11	-
Stat. unc. [%]	2.5	1.4	1.2	1.8	2.2	4.2	11	28	-
Jet syst. [%]	11	9.0	7.6	8.0	7.4	7.9	9.0	8.9	-
Unfolding syst. [%]	2.3	2.4	2.4	2.1	1.8	2.1	3.0	3.8	-
Other syst. [%]	2.3	2.3	2.3	2.4	2.4	2.5	2.6	2.6	-
Inclusive Z j j CRc,	m _{jj} cro	oss-sect	ion me	asurem	ents				
$\mathrm{d}\sigma$ / $\mathrm{d}m_{jj}$ [ab/GeV]	350	690	390	140	37	5.7	0.60	0.07	-
Stat. unc. [%]	1.9	1.2	1.2	2.0	2.7	5.8	18	36	-
Jet syst. [%]	6.7	3.6	3.3	5.0	2.3	4.7	5.5	4.0	-
Unfolding syst. [%]	1.2	1.0	0.8	0.9	1.1	1.6	2.1	2.3	-
Other syst. [%]	2.8	2.8	2.8	2.8	2.8	2.9	2.9	3.1	-
Low bin edge [TeV]	0.25	0.35	0.50	0.75	1.0	1.5	2.2	3.0	4.5
High bin edge [TeV]	0.35	0.50	0.75	1.0	1.5	2.2	3.0	4.5	7.5

Links to:

HepData entry with

all 20 unfolded measurements + statistical cross correlation

Associated Rivet routine

EW ZZjj measurement details Events / 0.125

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
EW ZZjj	20.6 ± 2.5	12.3 ± 0.7
$QCD \ ZZjj$	77 ± 25	17.2 ± 3.5
QCD $ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$		21.4 ± 4.8
WZ		22.8 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	114 ± 26	78.4 ± 6.2
Data	127	82

Results:

	$\mu_{ m EW}$	$\mu_{ ext{QCD}}^{\ell\ell\ell\ell jj}$	Significanc
$\ell\ell\ell\ell jj$	1.5 ± 0.4	0.95 ± 0.22	5.5
$\ell\ell u u jj$	0.7 ± 0.7	_	1.2
Combined	1.35 ± 0.34	0.96 ± 0.22	5.5

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell jj$	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$	$1.14 \pm 0.04 (\text{stat}) \pm 0.20 (\text{theo})$
$\ell\ell u u jj$	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

EW ZZjj candidate

Event with $m_{jj} = 2228 \text{ GeV}; m_{4l} = 605 \text{ GeV}$

e⁻

Run: 340368 Event: 454611985 2017-11-09 04:06:14 CEST

jet

Observation of EW $Z(\nu\nu)\gamma jj$

Process	Fake- <i>e</i> CR $W_{e\nu}^{\gamma}$ CR $W_{\mu\nu}^{\gamma}$ CI	W^{γ} CP	W^{γ} CP Z	Z^{γ} CP		${ m SR}$ - $m_{ m jj}~[{ m TeV}]$			
1100655		$W_{\mu\nu}$ OR	$\mu_{\mu\nu}$ OR $Z_{\text{Rev.Cen.}}$ OR	0.25 - 0.5	0.5 - 1.0	1.0-1.5	≥ 1.5		
Strong $Z\gamma + \text{jets}$	8 ± 8	0 ± 1	3 ± 2	50 ± 12	20 ± 6	54 ± 12	13 ± 5	5 ± 2	
EW $Z\gamma + \text{jets}$	0.6 ± 0.2	0.3 ± 0.2	0.4 ± 0.2	7 ± 2	4 ± 1	30 ± 7	25 ± 5	36 ± 7	
Strong $W\gamma + \text{jets}$	43 ± 9	47 ± 9	133 ± 21	24 ± 6	22 ± 6	35 ± 10	9 ± 3	3 ± 1	
${ m EW} \ W\gamma + { m jets}$	19 ± 6	31 ± 7	59 ± 13	1.4 ± 0.5	2 ± 1	6 ± 1	4 ± 1	5 ± 1	
$\mathrm{jet} ightarrow \gamma$	1 ± 1	2 ± 2	3 ± 2	2 ± 2	1 ± 1	2 ± 2	1 ± 1	0.4 ± 0.3	
$\mathrm{jet} ightarrow e$	34 ± 17	5 ± 3	_	_	-	—	—	—	
$e ightarrow \gamma$	_	2.7 ± 0.4	2.9 ± 0.4	13 ± 1	6 ± 1	11 ± 1	2.6 ± 0.4	1.4 ± 0.3	
$\gamma + \mathrm{jet}$	_	_	_	0.7 ± 0.5	0.7 ± 0.5	0.4 ± 0.3	0.1 ± 0.1	0.1 ± 0.1	
$tar{t}\gamma/V\gamma\gamma$	3 ± 1	9 ± 2	13 ± 2	3 ± 1	2 ± 1	4 ± 1	0.4 ± 0.2	0.1 ± 0.1	
Fitted Yields	108 ± 10	96 ± 8	213 ± 14	102 ± 9	58 ± 6	143 ± 12	54 ± 5	52 ± 6	
Data	108	95	216	100	52	153	50	52	
Data/Fit	1.00 ± 0.14	0.99 ± 0.12	1.01 ± 0.09	0.98 ± 0.13	0.90 ± 0.15	1.07 ± 0.11	0.93 ± 0.16	0.99 ± 0.18	

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2021-17/

Single and double boson production

