

Vector boson scattering in CMS

Meng Lu

on behalf of the CMS collaboration

26 Jul 2021

VBS: scattering between two vector bosons radiated from incoming partons. Unique topologies:

- Two very forward jets, with large eta separation and invariant mass
- Low hadronic activity in central region

<u>Possible couplings</u>: WWW/WWZZ/WWZ γ /WW $\gamma\gamma$...

Why VBS interesting?

- Very rare process (~ fbs), precision test of SM
- The longitudinal polarized part of massive vector boson is \succ connected to the Higgs mechanism, help us have a better understanding on Higgs mechanism
- The SM could be extended with dimension-8 operators standing for anomalous couplings between vector bosons, model independent search of BSM $\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{n=5}^{\infty} \frac{\mathbf{f}_n}{\Lambda^{n-4}} \mathcal{O}_n$

Current results

meng.lu@cern.ch

Recent VBS results:

- Longitudinally polarized scattering of same-sign WW: <u>PLB 812(2021) 136018</u>
- Semileptonic channel VBS WV: <u>PAS</u>
- VBS WW+WZ: <u>PLB 809(2020) 135710</u>
- VBS Zgamma: <u>PAS</u>, submitted to PRD \succ
- VBS Wgamma: <u>PLB 811(2020) 135988</u>

By Davide Valsecchi

Poster

First measurement of the polarized vector boson scattering.

Variable		Requirement	
Leptons	Exactly 2 same-sign leptons, $p_{\rm T} > 25/20 {\rm GeV}$		
$p_{\mathrm{T}}^{\mathrm{j}}$		>50 GeV	
$ m_{\ell\ell} - m_Z $	Signal	>15 GeV (ee)	
$m_{\ell\ell}$	Region (SR)	>20 GeV	
$p_{ m T}^{ m miss}$	8()	>30 GeV	
b quark vet	:0	Required	
$\operatorname{Max}(\mathbf{z}_{\ell}^*)$		< 0.75	
m_{ij}		>500 GeV	
$ \Delta \eta_{ m jj} $		>2.5	

Two BDTs are used:

- > BDT1 is used to separate inclusive ssWW from other bkg
- BDT2 is used to separate different polarized components of VBS

Several Control Regions (**CR**) are defined: ➤ Nonprompt CR: same with SR except b-veto

- inverted

 \succ WZ CR: three leptons, two of them form a Z boson \succ tZq CR: same as WZ CR except b-veto inverted > ZZ CR: 4 leptons with **VBS-like** selection Simultaneous fit is performed between SRs and CRs.

Simultaneous fit are performed between SR and CRs:

Sun Yat-Sen University, Meng Lu

LX: LL + LT

L: Longitudinally T: transversely

Signal: W is leptonic decay, and V (W, Z) is hadronic decay

Good balance between:

- Larger XS than fully leptonic decay channel \succ
- Smaller bkg than fully hadronic decay channel \succ

Following objects/variables are used to separate signal and bkg, and also event topology: > AK8 jet: Boosted or Resolved V hadronic mass: signal or Wjets bkg B jets: signal or Top bkg

- \succ
- \succ

Object selection

regions

Sun Yat-Sen University, Meng Lu

Wjet contribution is estimated using data-driven method in Wjets CR and propagated to SR.

VBS WV

DNN is used to separate signal and all bkgs. Different DNNs are used for resolved and boosted case. DNN is trained in signal region.

Results:
> EW signal significance: 4.4 (5.1)
$$\sigma$$
 observed (expected)
 $\mu_{EW} = \sigma^{obs} / \sigma^{SM} = 0.85^{+0.24}_{-0.20} = ^{+0.21}_{-0.17} (syst.) ^{+0.12}_{-0.12} (stat.)$
 $\mu_{EW+QCD} = \sigma^{obs} / \sigma^{SM} = 0.98^{+0.20}_{-0.17} = ^{+0.19}_{-0.16} (syst.) ^{+0.07}_{-0.07} (stat.)$

Sun Yat-Sen University, Meng Lu

0.5

0.8

0.6

0.4

0.2

0

0

Resolved signal regions. (EW as signal

Combine ssWW and VBS WZ (both leptonically decay), using full Run2 data.

ssWW: very clean channel, EW dominant over QCD-induced in signal region

- Differential cross section are measured, w.r.t, m_jj, m_ll, pt of leading lepton
- Constraints are obtained on the aQGC **VBS WZ**:
- EW signal extraction
- Differential cross section are measured, w.r.t, m_jj
- Constraints are obtained on the aQGC \succ

SRs and CRs are similar to ssWW in slide5

BDT method is used to separate EW WZ and QCD

Left: m_ll in ssWW SR Right: BDT score in VBS WZ

VBS ssWW+WZ

Significance Results:

- ssWW: 11.5 (11.3) σ for observed \succ (expected)
- VBS WZ: **6.8** (5.3)**o** for observed (expected)

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction	Theoretical prediction	
TIOCESS	<i>U B</i> (IB)	without NLO corrections (fb)	with NLO corrections (fb)	
	3.98 ± 0.45	2.02 ± 0.57	3.31 ± 0.47	
	$0.37(\mathrm{stat})\pm0.25(\mathrm{syst})$	5.95 ± 0.57		
$FW + OCD W^{\pm}W^{\pm}$	4.42 ± 0.47	4.24 ± 0.60	3.72 ± 0.59	
EW+QCD W W	$0.39(\mathrm{stat})\pm0.25(\mathrm{syst})$	4.34 ± 0.09		
EW WZ	1.81 ± 0.41	1.41 ± 0.21	1.24 ± 0.18	
	$0.39(\mathrm{stat})\pm0.14(\mathrm{syst})$	1.41 ± 0.21	1.24 ± 0.10	
	4.97 ± 0.46	4.54 ± 0.90	4.36 ± 0.88	
EW+QCD WZ	$0.40(\mathrm{stat})\pm0.23(\mathrm{syst})$	4.34 ± 0.90	4.50 ± 0.00	
QCD WZ	3.15 ± 0.49	3.12 ± 0.70	3.12 ± 0.70	
	$0.45(\mathrm{stat})\pm0.18(\mathrm{syst})$	5.12 ± 0.70	5.12 ± 0.70	

137 fb⁻¹ (13 TeV)

2500

m_{ii} [GeV]

3000

Generally good agreements between data and prediction.

Sun Yat-Sen University, Meng Lu

VBS ssWW+WZ

Sun Yat-Sen University, Meng Lu

11

Diboson transverse mass is used for aQGC study, no deviation from SM is observed in either ssWW or WZ.

Combining two channels

Expected
(TeV^{-4})
[-0.35, 0.37]
[-0.16, 0.19]
[-0.49, 0.63]
[-3.6, 3.7]
[-5.2, 5.5]
[-7.2, 7.3]
[-7.8, 7.6]
[-5.9, 6.2]
[-18, 18]

Because photon don't directly couple to Higgs boson, the interests of VBS $Z\gamma$ is its sensitivity to pure neutral aQGC, i.e., $ZZZ\gamma/ZZ\gamma\gamma/Z\gamma\gamma\gamma$

Using full Run2 data:

- \succ m_jj and $\Delta \eta_j$ are used to extract EW signal
- Differential XS in pt of l1, j1, photon and mjj
- aQGC limits are set using $m_Z\gamma$ \succ

d WWd

Main backgrounds:

- \succ QCD Z γ : estimated from MC, which is constrained by simultaneous fit
- Nonprompt photon: estimated using photon \succ shape fit through data-driven method

Results:

- \blacktriangleright observed significance much greater than 5**0**
- EW signal strength: 1.25 +- 0.18 XS: 5.43 +- 0.95 fb
- EW+QCD signal strength: 1.15 +- 0.12 \succ XS: 15.26 +- 1.75 fb

Sun Yat-Sen University, Meng Lu

Generally good agreements between data and prediction.

Similar to VBS $Z\gamma$, the main motivation of VBS $W\gamma$ is its sensitivity to aQGC.

Using 2016 data:

- m_jj and ml γ are used to extract EW signal
- aQGC limits are set using $m_W\gamma$

Main backgrounds:

- QCD W γ : estimated from MC, which is \succ constrained by simultaneous fit
- Nonprompt photon: estimated using \succ photon shape fit through data-driven method
- Nonprompt lepton: estimated through \succ data-driven method

 W^{-}

VBS $W\gamma$

Results:

- > Observed (expected) significance: 4.9σ (4.6σ) for 2016 data, 5.3 σ (4.8 σ) after combing with Run I data
- ➤ EW signal cross section: 20.4 ± 4.5 fb (corresponding signal strength: 1.20 +0.26-0.24)
- EW+QCD cross section: 108 ± 16 fb \succ (corresponding signal strength: 1.21 +0.17-0.16)

Invariant mass of W and photon is used for aQGC study. No obvious deviation from SM prediction is observed.

Most stringent limits on fM2-5, fT6-7

Parameters	Obs. limit	Exp. limit	U _{bound}
$f_{\rm M,0}/\Lambda^4$	[-8.1, 8.0]	[-7.7, 7.6]	1.0
$f_{\rm M,1}/\Lambda^4$	[-12, 12]	[-11, 11]	1.2
$f_{\rm M,2}/\Lambda^4$	[-2.8, 2.8]	[-2.7, 2.7]	1.3
$f_{\rm M,3}/\Lambda^4$	[-4.4, 4.4]	[-4.0, 4.1]	1.5
$f_{\rm M,4}/\Lambda^4$	[-5.0, 5.0]	[-4.7, 4.7]	1.5
$f_{\rm M,5}/\Lambda^4$	[-8.3, 8.3]	[-7.9, 7.7]	1.8
$f_{\rm M,6}/\Lambda^4$	[-16, 16]	[-15, 15]	1.0
$f_{\rm M,7}/\Lambda^4$	[-21, 20]	[-19, 19]	1.3
$f_{\rm T,0}/\Lambda^4$	[-0.6, 0.6]	[-0.6, 0.6]	1.4
$f_{\rm T,1}/\Lambda^4$	[-0.4, 0.4]	[-0.3, 0.4]	1.5
$f_{\rm T,2}/\Lambda^4$	[-1.0, 1.2]	[-1.0, 1.2]	1.5
$f_{\rm T,5}/\Lambda^4$	[-0.5, 0.5]	[-0.4, 0.4]	1.8
$f_{\rm T,6}/\Lambda^4$	[-0.4, 0.4]	[-0.3, 0.4]	1.7
$f_{\mathrm{T,7}}/\Lambda^4$	[-0.9, 0.9]	[-0.8, 0.9]	1.8

Sun Yat-Sen University, Meng Lu

Unitarity bound

- \succ CMS has performed quite comprehensive studies of the VBS process, and many of them have moved to full Run2 data analysis
- Longitudinally polarized VBS process has been measured for the first time in ssWW channel at CMS 🗮
- Semileptonic VBS analysis is shown for the first time *****
- > No obvious deviation has been observed in EFT measurement through VBS processes

Outlook:

- \succ More Run2 analyses to come
- \succ Run3 is coming (and HL-LHC), it's expected that it will give us more interesting VBS results with more data

Additional slides

Sun Yat-Sen University, Meng Lu

Longitudinal ssWW

Table 2: List and description of all the input variables for the signal BDT trainings.

Variables	Definitions
$\Delta \phi_{ m jj}$	Difference in azimuthal angle between the leading and subleadi
$p_{ m T}^{ m j1}$	$p_{\rm T}$ of the leading jet
$p_{\mathrm{T}}^{\mathrm{j2}}$	$p_{\rm T}$ of the subleading jet
$p_{\mathrm{T}}^{\ell_1}$	Leading lepton $p_{\rm T}$
$p_{\mathrm{T}}^{\ell_2}$	Subleading lepton $p_{\rm T}$
$\Delta \phi_{\ell\ell}$	Difference in azimuthal angle between the two leptons
$m_{\ell\ell}$	Dilepton mass
$p_{\mathrm{T}}^{\ell\ell}$	Dilepton $p_{\rm T}$
$m_{\mathrm{T}}^{\mathrm{WW}}$	Transverse WW diboson mass Z_{ℓ}^{+} =
$z^*_{\ell_1}$	Zeppenfeld variable of the leading lepton
$z^*_{\ell_2}$	Zeppenfeld variable of the subleading lepton
$\Delta R_{j1,\ell\ell}$	ΔR between the leading jet and the dilepton system
$\Delta R_{j2,\ell\ell}$	ΔR between the subleading jet and the dilepton system
$(p_{\rm T}^{\ell_1} p_{\rm T}^{\ell_2}) / (p_{\rm T}^{\rm j1} p_{\rm T}^{\rm j2})$	Ratio of $p_{\rm T}$ products between leptons and jets
$p_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum

Sun Yat-Sen University, Meng Lu

ing jets

Table 3: List and description of the input variables for the inclusive BDT training.

Variables	Definitions
m _{jj}	Dijet mass
$ \Delta \eta_{ m jj} $	Difference in pseudorapidity between the leading and sub
$\Delta \phi_{ m jj}$	Difference in azimuth angles between the leading and sub
$p_{ m T}^{ m j1}$	$p_{\rm T}$ of the leading jet
$p_{\mathrm{T}}^{\mathrm{j2}}$	$p_{\rm T}$ of the subleading jet
$p_{\mathrm{T}}^{\ell_1}$	Leading lepton $p_{\rm T}$
$p_{\mathrm{T}}^{\ell\ell}$	Dilepton $p_{\rm T}$
$z^*_{\ell_1}$	Zeppenfeld variable of the leading lepton
$z^*_{\ell_2}$	Zeppenfeld variable of the subleading lepton
$p_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum

leading jets leading jets

Longitudinal ssWW

	Process	$\sigma \mathcal{B}$ (fb)	Theoretical predictio
	$W_L^{\pm}W_L^{\pm}$	$0.24\substack{+0.40\-0.37}$	0.28 ± 0.03
op restframe	$\mathrm{W}_X^\pm\mathrm{W}_\mathrm{T}^\pm$	$3.25\substack{+0.50\\-0.48}$	3.32 ± 0.37
	$\mathrm{W}^\pm_\mathrm{L}\mathrm{W}^\pm_X$	$1.40\substack{+0.60\\-0.57}$	1.71 ± 0.19
	$W_T^{\pm}W_T^{\pm}$	$2.03_{-0.50}^{+0.51}$	1.89 ± 0.21

XS results in p

on (fb)

	Signal region	Top control region	W+je
Resolved category	Ele p _T > 30 GeV (2016), 35 GeV (2017, 2018) Muon p _T > 30 GeV PuppiMET > 30 GeV Leading VBS jet p _T > 50 GeV trailing VBS jet and Vjets p _T > 30 GeV Δη _{VBS} > 2.5 , M _{jj VBS} > 500 GeV Leptonic M ^T _W < 185 GeV bVeto with Loose DeepCSV WP V had p_T < 200 GeV 65 GeV < Mjj Vhad < 105 GeV	Ele $p_T > 30$ GeV (2016), 35 GeV (2017, 2018) Muon $p_T > 30$ GeV PuppiMET > 30 GeV Leading VBS jet $p_T > 50$ GeV trailing VBS jet and Vjets $p_T > 30$ GeV $\Delta \eta_{VBS} > 2.5$, $M_{jj VBS} > 500$ GeV Leptonic $M_W^T < 185$ GeV bTag with Tight DeepCSV WP V had $p_T < 200$ GeV 65 GeV < Mjj Vhad < 105 GeV	Ele p _T > 30 Lead trailing \ Δη _{VE} Le bVeto 40 < Mjj Vha
Boosted category	Ele p_T > 30 GeV (2016), 35 GeV (2017, 2018) Muon p_T > 30 GeV PuppiMET > 30 GeV Leading VBS jet p_T > 50 GeV trailing VBS jet p_T > 30 GeV $\Delta \eta_{VBS}$ > 2.5 , $M_{jj VBS}$ > 500 GeV Leptonic M_W^T < 185 GeV bVeto with Loose DeepCSV WP V had p_T > 200 GeV 70 GeV < Mjj Vhad < 115 GeV	Ele p_T > 30 GeV (2016), 35 GeV (2017, 2018) Muon p_T > 30 GeV PuppiMET > 30 GeV Leading VBS jet p_T > 50 GeV trailing VBS jet p_T > 30 GeV $\Delta \eta_{VBS}$ > 2.5 , $M_{jj VBS}$ > 500 GeV Leptonic M_W^T < 185 GeV bTag with Tight DeepCSV WP V had p_T > 200 GeV 70 GeV < Mjj Vhad < 115 GeV	Ele p _T > 30 Lead trai Δη _{VE} Le bVeto 40 G 115 G

ets control region

GeV (2016), 35 GeV (2017, 2018) Muon $p_T > 30 \text{ GeV}$ PuppiMET > 30 GeV ding VBS jet $p_{T} > 50 \text{ GeV}$ VBS jet and Vjets p_T > 30 GeV $_{\rm BS}$ > 2.5 , M $_{\rm jj~VBS}$ > 500 GeV eptonic M^ř_w < 185 GeV **with Loose** DeepCSV WP V had $p_{T} < 200 \text{ GeV}$ ad < 65 GeV, Mjj Vhad > 105 GeV

GeV (2016), 35 GeV (2017, 2018) Muon p_{T} > 30 GeV PuppiMET > 30 GeV ding VBS jet $p_{\tau} > 50$ GeV ling VBS jet p_T > 30 GeV $_{\rm BS}$ > 2.5 , $M_{\rm jj\,VBS}$ > 500 GeV eptonic M^T_w < 185 GeV **with Loose** DeepCSV WP V had $p_T > 200 \text{ GeV}$ GeV < Mjj Vhad < 70 GeV ieV < Mjj Vhad < 250 GeV

VBS WV

Top: Top control region Bottom: W+jets region

- \succ regions
- \succ regions
- \succ

Sun Yat-Sen University, Meng Lu

22

Fit DNN shape in the signal

Fit W+jets subcategories normalizations in W+jets control

Fit only normalization in top-quark control regions

ssWW+WZ

BDT inputs for separation between EW WZ and QCD WZ.

Variable	Definition
m _{ij}	Mass of the leading and trailing jets s
$ \Delta \eta_{ii} $	Absolute difference in rapidity of the leading a
$\Delta \phi_{jj}$	Absolute difference in azimuthal angles of the lead
$p_{\mathrm{T}}^{\mathrm{j1}}$	p_{T} of the leading jet
$p_{\mathrm{T}}^{\mathrm{j2}}$	p_{T} of the trailing jet
$\eta^{j\bar{1}}$	Pseudorapidity of the leading je
W MZ	Absolute difference between the rapidities o
$ \eta = \eta$	and the charged lepton from the decay of t
$z_{\ell_i}^*(i=1-3)$	Zeppenfeld variable of the three selected
$z_{3\ell}^*$	Zeppenfeld variable of the vector sum of the
$\Delta R_{j1,Z}$	ΔR between the leading jet and the Z
$ \vec{t} \rightarrow tot / \sum n^{i}$	Transverse component of the vector sum of
$ p_{\mathrm{T}} / \sum_{i} p_{\mathrm{T}}$	and tagging jets momenta, normalized to their

Sun Yat-Sen University, Meng Lu

system and trailing jets ling and trailing jets

of the Z boson the W boson d leptons three leptons boson of the bosons r scalar $p_{\rm T}$ sum

Left: leading lepton pt Right: invariant mass of two

ssWW+WZ

	Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)	Observed (WZ)	Expected (WZ)	Obser
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV
$f_{\rm T0}/\Lambda^4$	[-0.28, 0.31]	[-0.36, 0.39]	[-0.62, 0.65]	[-0.82, 0.85]	[-0.25,
$f_{\mathrm{T1}}/\Lambda^4$	[-0.12, 0.15]	[-0.16, 0.19]	[-0.37, 0.41]	[-0.49, 0.55]	[-0.12,
$f_{\rm T2}/\Lambda^4$	[-0.38, 0.50]	[-0.50, 0.63]	[-1.0, 1.3]	[-1.4, 1.7]	[-0.35,
$f_{\rm M0}/\Lambda^4$	[-3.0, 3.2]	[-3.7, 3.8]	[-5.8, 5.8]	[-7.6, 7.6]	[-2.7,
$f_{\rm M1}/\Lambda^4$	[-4.7, 4.7]	[-5.4, 5.8]	[-8.2, 8.3]	[-11, 11]	[-4.1,
$f_{\rm M6}/\Lambda^4$	[-6.0, 6.5]	[-7.5, 7.6]	[-12, 12]	[-15, 15]	[-5.4,
$f_{\rm M7}/\Lambda^4$	[-6.7, 7.0]	[-8.3, 8.1]	[-10, 10]	[-14, 14]	[-5.7,
$f_{\rm S0}/\Lambda^4$	[-6.0, 6.4]	[-6.0, 6.2]	[-19, 19]	[-24, 24]	[-5.7,
$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]	[-30, 30]	[-38, 39]	[-16,

Bottom: cutting the EFT expansion at the unitarity limit

	Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)	Observed (WZ)	Expected (WZ)	Obse
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV
$f_{\rm T0}/\Lambda^4$	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1,
$f_{\rm T1}/\Lambda^4$	[-0.81, 1.2]	[-0.98, 1.4]	[-1.3, 1.5]	[-1.6, 1.8]	[-0.69,
$f_{\rm T2}/\Lambda^4$	[-2.1, 4.4]	[-2.7, 5.3]	[-2.7, 3.4]	[-4.4, 5.5]	[-1.6,
$f_{\rm M0}/\Lambda^4$	[-13, 16]	[-19, 18]	[-16, 16]	[-19, 19]	[-11,
$f_{\rm M1}/\Lambda^4$	[-20, 19]	[-22, 25]	[-19, 20]	[-23, 24]	[-15,
$f_{\rm M6}/\Lambda^4$	[-27, 32]	[-37, 37]	[-34, 33]	[-39, 39]	[-22,
$f_{\rm M7}/\Lambda^4$	[-22, 24]	[-27, 25]	[-22, 22]	[-28, 28]	[-16,
$f_{\rm S0}/\Lambda^4$	[-35, 36]	[-31, 31]	[-83, 85]	[-88, 91]	[-34,
$f_{\rm S1}/\Lambda^4$	[-100, 120]	[-100, 110]	[-110, 110]	[-120, 130]	[-86,

rved Expected ⁻⁴) (TeV^{-4}) 0.28] [-0.35, 0.37] 0.14] [-0.16, 0.19] 0.48] [-0.49, 0.63] 2.9] [-3.6, 3.7] 4.2] [-5.2, 5.5] 5.8] [-7.2, 7.3] 6.0] [-7.8, 7.6] 6.1] [-5.9, 6.2] 17] [-18, 18]

Expected erved $7^{-4})$ (TeV^{-4}) 1.6] [-1.6, 2.0] 0.97] [-0.94, 1.3] 3.1] [-2.3, 3.8] 12] [-15, 15] 14] [-18, 20] 25] [-31, 30] 18] [-22, 21] 35] [-31, 31] 99] [-91, 97]

VBS $Z\gamma$

Common selection	$p_{\rm T}^{\ell 1,\ell 2} > 25 { m GeV}, \eta^{\ell 1,\ell 2} < 2.5$ for electron ch
	$p_{\mathrm{T}}^{\ell 1,\ell 2} > 20 \mathrm{GeV}$, $ \eta^{\ell 1,\ell 2} < 2.4$ for muon cha
	$p_{\rm T}^{\gamma} > 20 { m GeV}, \eta^{\gamma} < 1.444 \text{ or } 1.566 < \eta^{\gamma} < 1.444 \text{ or } 1.566 \text{ or } 1.$
	$p_{\rm T}^{\rm j1,j2} > 30{ m GeV}, \eta^{\rm j1,j2} < 4.7$
	$70 < m_{\ell\ell} < 110 \text{GeV}, m_{Z\gamma} > 100 \text{GeV}$
	$\Delta R_{jj}, \Delta R_{j\gamma}, \Delta R_{j\ell} > 0.5, \Delta R_{\ell\gamma} > 0.7$
Control region	$150 < m_{\rm ii} < 500 {\rm GeV}$
U	Common selection
EW signal region	$m_{\rm H} > 500 {\rm GeV} \Lambda n_{\rm H} > 2.5$
	Common selection
	$n^* < 2.4$, $\Delta \phi_{7,a,a} > 1.9$
	$(1 - 1 - 1) - 1 Z(\gamma, j) = -1$
Fiducial volume	$m_{jj} > 500 \text{GeV}, \Delta \eta_{jj} > 2.5,$
	Common selection
aQGC search region	$m_{jj} > 500 \text{GeV}, \Delta \eta_{jj} > 2.5,$
	$p_{\rm T}^{\gamma} > 120 {\rm GeV},$
	Common selection, without requirement of

channel hannel < 2.500

on $m_{Z\gamma}$

Sun Yat-Sen University, Meng Lu

VBS $W\gamma$

QCD+EW:

comparison between data and prediction

aQGC operators

$$\mathcal{L}_{M,0} = \frac{f_{M0}}{\Lambda^4} \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right],$$

$$\mathcal{L}_{M,1} = \frac{f_{M1}}{\Lambda^4} \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right],$$

$$\mathcal{L}_{M,2} = \frac{f_{M2}}{\Lambda^4} \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right],$$

$$\mathcal{L}_{M,3} = \frac{f_{M3}}{\Lambda^4} \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right],$$

$$\mathcal{L}_{M,3} = \frac{f_{M3}}{\Lambda^4} \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right],$$

$$\mathcal{L}_{M,4} = \frac{f_{M4}}{\Lambda^4} \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu},$$

$$\mathcal{L}_{M,5} = \frac{f_{M5}}{\Lambda^4} \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right],$$

$$\mathcal{L}_{M,6} = \frac{f_{M6}}{\Lambda^4} \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right],$$

$$\mathcal{L}_{M,7} = \frac{f_{M7}}{\Lambda^4} \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right].$$

$$\mathcal{L}_{T,9} = \frac{f_{T9}}{\Lambda^4} B_{\mu\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}.$$

 Φ is Higgs doublet, Wµv and Bµv are field-strength tensors of SU(2) and U(1)

$Tr[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}],$

- $Tr[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}],$
- $Tr[\hat{W}_{\beta\nu}\hat{W}^{\nu\alpha}],$
- $B_{\alpha\beta}B^{\alpha\beta},$
- $B_{\mu\beta}B^{\alpha\nu},$
- $B_{\beta\nu}B^{\nu\alpha}$,

fM* limits

fT* limits

Aug 2020	CMS ATLAS	Channel	Limits	∫ <i>L</i> dt	s
$f_{T,0}/\Lambda^4$		www Zv	[-1.2e+00, 1.2e+00] [-3.8e+00, 3.4e+00]	35.9 fb ⁻¹ 19 7 fb ⁻¹	13 TeV 8 TeV
	· • •	Ξų	-7.4e-01, 6.9e-01]	35.9 fb 1	13 TeV
		Ψv	-5.4e+00, 2.9e+00	29.2 fb ⁻¹ 19 7 fb ⁻¹	8 TeV 8 TeV
	с. н. "С	ŴÝ	-6.0e-01, 6.0e-01]	35.9 fb 1	13 TeV
	н	ss ww ss WW	[-2.8e-01, 3.1e-01]	19.4 fb 137 fb ⁻¹	13 TeV
	÷	WZ	[-6.2e-01, 6.5e-01]	137 fb ⁻¹	13 TeV
	8	WV ZV	-1.2e-01, 1.1e-01	137 fb ⁻¹ 35.9 fb ⁻¹	13 TeV
f_{T_1}/Λ^4		ŴŴŴ		35.9 fb ⁻¹	13 TeV
1,1		Źγ	-1.2e+00, 1.1e+00	35.9 fb ⁻¹	13 TeV
		Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
		ss WW	[-2.1e+00, 2.4e+00]	35.9 fb 19.4 fb	8 TeV
		ss WW	[-1.2e-01, 1.5e-01]	137 fb ⁻¹	13 TeV
	B	ZZ	[-3.1e-01, 3.1e-01]	137 fb ⁻¹	13 TeV
		WV ZV	[-1.2e-01, 1.3e-01]	35.9 fb ⁻¹	13 TeV
t _{T,2} /Λ ·		Žγ	-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
		ζγ	[-2.0e+00, 1.9e+00] [-1.1e+01, 1.2e+01]	35.9 fb ⁻¹	13 TeV 8 TeV
	· · · · · · ·	Ŵγ	-1.0e+00, 1.2e+00	35.9 fb ⁻¹	13 TeV
		ss WW ss WW	[-5.9e+00, 7.1e+00] [-3.8e-01, 5.0e-01]	19.4 fb ⁻¹	8 IeV 13 TeV
	High and the second	WZ	[-1.0e+00, 1.3e+00]	137 fb ⁻¹	13 TeV
	T		-6.3e-01, 5.9e-01	137 fb 35.9 fb ⁻¹	13 TeV 13 TeV
f_{T_F}/Λ^4		Žγγ	-9.3e+00, 9.1e+00]	20.3 fb	8 TeV
1,5		Ŵγ	[-3.8e+00, 3.8e+00]	35.9 fb 19.7 fb ⁻¹	8 TeV
4	H	<u>Wý</u>	-5.0e-01, 5.0e-01]	35.9 fb ⁻¹	13 TeV
f _{⊤,6} /Λ⁻		Ŵγ	-2.8e+00, 3.0e+00	35.9 fb 19.7 fb ⁻¹	8 TeV
· · · · · · · · · · · · · · · · · · ·	H	<u>Wý</u>	[-4.0e-01, 4.0e-01]	35.9 fb ⁻¹	13 TeV
$f_{T,7}/\Lambda$		Ŵγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
r 1 A 4		<u>γ</u>	-9.0e-01, 9.0e-01	<u>35.9 fb⁻¹</u>	13 TeV
τ _{τ,8} /Λ	(H)	Ξŗ	-4.7e-01, 4.7e-01]	35.9 fb ⁻¹	13_TeV
		2Y 77	[-1.8e+00, 1.8e+00] [-4.3e-01, 4.3e-01]	20.2 fb ⁻¹	8 IeV 13 TeV
$f_{\tau o} / \Lambda^4$		Žγγ	-7.4e+00, 7.4e+00]	20.3 fb	8 TeV
1,9		Zγ Zv	-1.3e+00, 1.3e+00	19.7 fb 35.9 fb ⁻¹	13 TeV
ñ .		ZΫ́	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV
		<u>4</u> 2	[-9.28-01, 9.28-01]	137 10	
-20	0	20		40	28
aC summary plots at: http://cern.ch/go/8ghC			GC Limits 6	D95% C I	[TeV ⁻⁴]
		ue			

Sun Yat-Sen University, Meng Lu

30

