

Measurement of the W boson mass with the LHCb detector

Ross Hunter

The University of Warwick, U.K. on behalf of the LHCb Collaboration

European Physical Society Conference on High Energy Physics 2021

Science and Technology Facilities Council

Scientific Context

- Three degrees of freedom in electroweak theory.
- m_W indirectly predictable given well-known m_Z , α , G_F :

Status of the field

- Combination of global fits to EW sector (indirect) and direct m_W measurements place constraints on new physics.
- $m_W^{EWfit} = 80354 \pm 7$ MeV, $m_W^{ATLAS} = 80370 \pm 19$ MeV (EPJC 78, 110 (2018)),
- LHCb full Run-2 data: O(10) MeV statistical uncertainty on m_W ,
- Historically-limiting PDF uncertainties expected to anti-correlate in a GPD-LHCb combination...
- ...but limited by theory systematics.
- \Rightarrow Today: a proof-of-principle measurement with the 2016 data (1/3 of Run 2).

EPS-HEP 2021

LHCb

<u>JINST 3 (2008) S08005</u> and <u>Int. J. Mod. Phys. A 30, 1530022 (2015)</u>

- Single arm spectrometer, fully instrumented in the forward region.
- Mostly designed for flavour physics, but with a strong programme of probing vector boson production*.

*Full list of LHCb EW papers here

How we measure m_W

- $W \rightarrow \mu \nu$ gives a single, high- p_T , isolated muon. m_W sensitivity from p_T^{μ} , which peaks at $\sim m_W/2$.
- \Rightarrow Extract m_W in a template fit to the muon q/p_T distribution.

Angular coefficients

-0.01

0.01

 $\frac{0.01}{q/p} \frac{0}{1} \frac{0}{1} \frac{0}{1}$

0.02

0.03

• Solution: float a single A_3 scale factor in the fit to absorb this uncertainty.

EPS-HEP 2021

-0.04

-0.03

-0.02

1.3 1.2

1.1

0.9 0.8 0.7

Ratio

Ross Hunter, University of Warwick

0.04

In-situ MC generator tuning

- POWHEG-Box + Pythia8 is our central model.
- Previous m_W measurements rely on tuning to p_T^Z . Does this tune hold for p_T^W ?
- variations in α_S and k_T^{intr} affect p_T^{μ} differently to variations in m_W .
- ⇒ Float these QCD parameters in a simultaneous fit to $W q/p_T^{\mu}$ and $Z \phi^*$.

[Pseudo]data challenges

• Using our central model to fit pseudodata generated from different models (e.g. HerwigNLO) gives a similar spread as using those different models to fit the real data.

Data config.	χ^2_W	χ^2_Z	$\delta m_W \; [{ m MeV}]$
POWHEGPYTHIA	64.8	34.2	
HERWIGNLO	71.9	600.4	1.6
POWHEGHERWIG	64.0	118.6	2.7
Pythia 8, CT09MCS	71.0	215.8	-2.4
Pythia 8, NNPDF31	66.9	156.2	-10.4
DYTURBO	81.5	334.3	-0.8

Detector alignment & calibration

To measure m_W accurately we need to eliminate biases in p_T^{μ} due to detector misalignment effects.

- 1. Custom alignment for high- p_T muons.
- 2. Finer, analysis-level curvature (q/p) corrections from the "pseudomass" method on $Z \rightarrow \mu\mu$.
- Differences in M^+ and M^- allow for mapped curvature corrections across the detector.

Inspired by <u>PRD 91, 072002 (2015)</u>

Detector alignment & calibration

3. Additional smearing of the simulation:

Ross Hunter, University of Warwick

EPS-HEP 2021

Signal selection

- Veto events with second high- p_T^{μ} muon in acceptance ($p_T^{\mu} > 25$ GeV): rejects $Z \rightarrow \mu\mu$,
- Signal muon is well-reconstructed, muon ID-ed and required to fire high p_T single muon triggers,
- Muon candidate is isolated: rejects heavy flavour backgrounds.

This selects 2.4M events in the fit window $28 < p_T^{\mu} < 52$ GeV, $2.2 < \eta < 4.4$.

Treatment of backgrounds

- Electroweak backgrounds constrained with $Z \rightarrow \mu\mu$.
- Remaining decay-in-flight hadronic background (10x heavy flavour) modelled with a parametric shape, trained on a hadron-enriched data sample:

EPS-HEP 2021

Ross Hunter, University of Warwick

Muon reconstruction efficiencies

- Simulated events corrected for data/simulation differences using event-by-event weights.
- Efficiencies from tag-and-probe method with $Z \rightarrow \mu\mu$ and $\Upsilon(1S) \rightarrow \mu\mu$.
- Muon reconstruction weights from fit to efficiency ratio as function of p_T^{μ} , binned in η and ϕ .

Ross Hunter, University of Warwick

12

Isolation efficiency

- Simulated events corrected for data/simulation differences using event-by-event weights.
- Efficiencies from tag-and-probe method with $Z \rightarrow \mu\mu$.
- Isolation weights from efficiency ratios binned in recoil projection *u* and *η*.

EPS-HEP 2021

The fit result

Floating parameter	Postfit value
Fraction of $W^+ \to \mu^+ \nu$	0.5293 ± 0.0006
Fraction of $W^- \to \mu^- \nu$	0.3510 ± 0.0005
Fraction of hadron background	0.0151 ± 0.0007
$lpha_s^Z$	0.1243 ± 0.0004
$lpha_s^W$	0.1263 ± 0.0003
$k_T^{ m intr}$	$1.57\pm0.14~{\rm GeV}$
A_3 scaling	0.979 ± 0.026

 $\chi^2/ndf = 105/102$ $\sigma_{stat} = 23 \text{ MeV}$

EPS-HEP 2021

Uncertainty breakdown

Source	Size [MeV]	
Parton distribution functions	9.0	Average of NNPDF31, CT18, MSHT20
Theory (excl. PDFs) Total	17.4	
Transverse momentum model	12.0	Envelope from five different models
Angular Coefficients	9.0	Uncorrelated scale variation
QED FSR model	7.2	Envelope of Pythia8, Photos and Herwig7
Additional electroweak corrections	5.0	Tested with POWHEGew
Experimental Total	10.6	
Momentum scale and resolution modelling	7.5	
Muon ID, trigger and tracking efficiency	6.0	Includes statistical uncertainties, details of the methods (e.g. binning,
Isolation efficiency	3.9	smoothing) and dependence on external inputs
QCD background	2.3	externar inputs.
Statistical	22. 7	
Total	31.7	

The result

Taking the arithmetic average of results with <u>NNPDF31</u>, <u>CT18</u> and <u>MSHT20</u>:

Conclusions and outlook

LHCb Integrated Recorded Luminosity in pp, 2010-2018

- First measurement of the W boson mass at LHCb achieves a precision of \sim 32 MeV, using roughly 1/3 of the Run 2 dataset.
- An overall precision < 20 MeV looks achievable with existing LHCb data.
- Measurement expected to provide significant impact on a LHC-wide average due to potential anti-correlation of PDF uncertainties.
- LHCb-PAPER-2021-024 in preparation

EPS-HEP 2021

Thank you for your attention. Any questions?

Backup

EPS-HEP 2021

PDF uncertainty and prospects for combination

• Large PDF uncertainty expected to anti-correlate with PDF uncertainty on a ATLAS or CMS *m_W* measurement.

Cross-checks

- Orthogonal splits: Five ~50:50 splits of the data (polarity, charge × polarity, etc...) all result in [mw] differences within 2σ.
- 2. Fit range: The result is stable w.r.t. variations in the upper/lower limits.
- 3. Fit freedom: The result is stable w.r.t. variations in the model freedom (e.g. 3 independent a_s values instead of 2, etc...)
- 4. W-like fit of the Z mass: Measurements with μ^+ and μ^- agree to better than 1 σ and their average agrees with the PDG value to better than 1 σ .
- δmw fit: Alternative fit with the difference between the W⁺ and W⁻ masses as another floating parameter: this parameter is consistent with zero within 1σ.
- 6. Additional tests with NNLO PDFs instead of NLO PDFs, variations in the charm quark mass, etc... affect m_W at the ≤ 1 MeV level.

Limitations of previous m_w measurements

	$\Delta M_W ~({ m MeV})$		
Source	m_T	p_T^e	E_T
Electron energy calibration	16	17	16
Electron resolution model	2	2	3
Electron shower modeling	4	6	7
Electron energy loss model	4	4	4
Hadronic recoil model	5	6	14
Electron efficiencies	1	3	5
Backgrounds	2	2	2
Experimental subtotal	18	20	24
PDF	11	11	14
QED	7	7	9
Boson p_T	2	5	2
Production subtotal	13	14	17
Total	22	24	29

TABLE II: Systematic uncertainties of the M_W measurement.

Do: PRL 108 (2012) 151804

Source	Uncertainty (MeV)	
Lepton energy scale and resolution	7	
Recoil energy scale and resolution	6	
Lepton removal	2	
Backgrounds	3	
$p_T(W) ext{ model}$	5	
Parton distributions	10	
QED radiation	4	
W-boson statistics	12	
Total	19	

CDF: PRL 108 (2012) 151803

• Expected to be a bigger problem for pp collisions rather than $\bar{p}p$:

Fitting the $Z \phi^*$ distribution

- We could fit p_T^Z :
- But v. sensitive to all detector modelling effects!

- Instead fit/bin the Z in ϕ^* :
 - (tuning parameters of fit coming later...)

$$\phi^* \equiv \tan\left(\frac{\pi - \Delta\phi}{2}\right) / \cosh\left(\frac{\Delta\eta}{2}\right) \sim \frac{p_{\rm T}}{M}$$

EPJC 71, 1600 (2011)

Charge-dependent curvature biases

Momentum smearing function

3) Additional smearing of the simulation to better model the data:

$$\frac{q}{p} \to \frac{q}{p \cdot \mathcal{N}(1 + \alpha, \sigma_{\rm MS})} + \mathcal{N}\left(\delta, \frac{\sigma_{\delta}}{\cosh \eta}\right),$$

Effects modelled are curvature bias (δ), momentum *scale* (1 + α), momentum-independent (σ_{MS}) and momentum-dependent (σ_{δ}) smearing.

POWHEG+Pythia as central model

- POWHEG-Box + Pythia8 = best description of p_T^Z -> our central model.
- Other models (POWHEG-HERWIG, PYTHIACT09MCS, PYTHIANNPDF31 and HERWIG NLO) are used to evaluate systematic uncertainty (12 MeV).

Electroweak Corrections

Central result based on the average of these 3 QED FSR models (simulation reweighted according to the relative energy loss).

EPS-HEP 2021