Electroweak Precision Physics at FCC-ee

Jan Eysermans (Massachusetts Institute of Technology)

EPS-HEP2021 conference – July 26 2021

EWK measurements overview

Contour fits of EWK measurements with experimental data available to date

Higher precision on EWK parameters enable further constraints and test SM closure tests:

- Direct sensitive to new physics
- Parameters entangled: $m_W^{}, m_{top}^{}, \alpha_S^{}, ...$
- Also theory improvements necessary

FCCee overview

- Circular e+/e- collider with ~ 100 km in circumference
- Colliding at 2 interaction points (4 IPs under discussion)
- Facility to host hh collider at later stage (cfr. LEP-LHC)
- Foreseen timeline: construction 2030–40, operation 40–55 (15y)

Multiple energy points exploiting large range of physics					
Threshold	Center-of-mass	Luminosity	Events		
Z-pole	91 GeV	150	5x10 ⁶ M Z		
WW-pole	161 GeV	12	50M WW		
H-pole	240 GeV	5	1M ZH		
tt-pole	365 GeV	1.5	1M tt		

FCCee physics potential

"FCCee = TeraZ or Higgs factory": true, but also a discovery machine!

Rich physics programme including (EWK) precision measurements:

- Mass, width, cross section of W, Z, top and Higgs
- Strong and electromagnetic coupling constants at various \sqrt{s}
- Neutrino species/Z-invisible
- Flavor physics
- Direct searches for new physics
- ...

Put large constraints on SM EWK parameter space, narrowing down closure tests hence sensitive to new physics

Ref.: "Future Circular Collider Study. Volume 1: Physics Opportunities. Conceptual Design Report, preprint edited by M. Mangano et al. CERN accelerator reports. CERN-ACC-2018-0056, Geneva, December 2018. Published in Eur. Phys. J. C"

To further increase and optimize the physics potential, a detailed feasibility study is needed:

- Baseline of machine parameters and detector concepts
- Assess impact on systematic uncertainties with direct feedback to machine/detector R&D
- Assess shortcomings on theory

FCCee key elements

- 1) **High statistics** (e.g. 10⁷ times more Zs than LEP1)
- 2) **Dedicated energy points** for precision measurements and combinations \rightarrow unique programme
- 3) In-situ beam energy calibration (<u>arXiv:1909.12245</u>):
 - Center-of-mass uncertainty dominant for many EWK precision (mass) measurements
 - Z/WW: resonant depolarisation measurements on a continuous basis $\rightarrow 10^{-6}$ relative accuracy achievable 100(300) keV unc. at Z(WW)
 - Higher energies: cannot use RDP, usage of Z-γ radiative return events (~ 2 MeV at 240 GeV)
- 4) Online luminosity meter:
 - Precise knowledge of luminosity important for cross-section and branching fraction measurements
 - Using Bhabha-scattering events with dedicated forward detector \rightarrow dL/L ~ 10⁻⁴ accuracy achievable Point-to-point ~ 10⁻⁵
- 5) Detectors: high granularity, improved impact parameter \rightarrow better reconstruction and resolutions
- 6) Very clean environment (cfr. LEP)

Z lineshape –
$$\alpha_{QED} (m_Z^2)$$

 $Z \rightarrow \mu\mu$ forward/backward asymmetry sensitive to $\alpha_{QFD}(m_z^2)$ due to Z- γ interference:

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \times \left[1 + \frac{8\pi\sqrt{2}\alpha_{\rm QED}(s)}{m_Z^2 G_{\rm F} \left(1 - 4\sin^2\theta_{\rm W}^{\rm eff}\right)^2} \frac{s - m_Z^2}{2s} \right] \xrightarrow{\rightarrow} \text{strongly depends on } \sqrt{s}$$

$$\rightarrow \text{direct measurement of } \alpha_{\rm QED}(s) \text{ at } \sqrt{s} \text{ != } m_Z$$

$$\rightarrow \text{ measure } \sin^2\theta_{\rm W} \text{ to high precision (later)}$$

Perform line-scan around Z-pole to maximise Z- γ interference and measure A_{FB}:

Z peak –
$$sin^2\theta_w$$

 $Z \rightarrow \mu\mu$ forward/backward asymmetry also used to measure ewk mixing angle sin² θ_w at Z-pole = 91.2 GeV:

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \longrightarrow \mathcal{A}_{e} = \frac{g_{\rm L,e}^{2} - g_{\rm R,e}^{2}}{g_{\rm L,e}^{2} + g_{\rm R,e}^{2}} = \frac{2v_{\rm e}/a_{\rm e}}{1 + (v_{\rm e}/a_{\rm e})^{2}}, \text{ with } v_{\rm e}/a_{\rm e} \equiv 1 - 4\sin^{2}\theta_{\rm W}^{\rm eff}$$

$$\bigwedge A_{\rm FB}^{\mu\mu}(s) \sim 3\times10^{-6} \text{ (stat)} + 4\times10^{-6} \text{ (syst)} \longrightarrow \text{Measure } \sin^{2}\theta_{\rm W} \text{ to } 3\times10^{-6} \text{ abs. precision (currently 1.6\times10^{-4})}$$

$$\rightarrow Assumes \ \text{lepton universality: } A_{\rm e} = A_{\mu}$$

$$\rightarrow \text{Mainly dominated by energy calibration (point-to-point)}$$

Tau polarization used to constrain the mixing angle to a similar precision

- No assumption on lepton universality (direct separation A and A,)
- A_r from P_r: benefit from high statistics and very robust measurement

Z lineshape – mass, width and σ^0_{had}

Systematics limited due to beam calibration uncertainties (RDP ~ 100 keV)

[LEP 2.1 MeV]

[LEP 2.3 MeV]

 \rightarrow Width ± 4 keV (stat) ± 25 keV (syst)

- Systematics dominated by:
 - Relative (point-to-point) uncertainty on the \sqrt{s} ~ 22 keV
 - Impact on beam-energy spread uncertainty ~ 10 keV
 - Absolute uncertainty on BES ~ 84 MeV
 - Constrained using $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ events:
 - \rightarrow Constrain BES uncertainty to per-mille level
 - \rightarrow Taking into account asymmetric beam optics (x-angle α 30 mrad) and $\gamma\text{-ISR}$
 - \rightarrow Muon angular resolution ~ 0.1 mrad required

\rightarrow Figure 1.1 Hole Cross-section O_{had}^{*} ± 4 pb [LEP 37 pb]	
\rightarrow Number of neutrino families: 1x10 ⁻³ (abs) [LEP 7x10 ⁻³]	

Dominated by luminosity uncertainty

Z peak – couplings and $\alpha_{s}(m_{z}^{2})$

Couplings measured from ratio of hadronic and leptonic partial widths

 \rightarrow need control on detector acceptances: detector precision ~ 10 μm

WW threshold

W mass and width extracted from line-scans using WW xsec

2 energy points determined from Δm_W and $\Delta \Gamma_W$ sensitivities on WW xsec: \rightarrow **157.1 GeV width measurement:** maximum sensitivity on width \rightarrow **162.5 GeV mass measurement:** minimal impact on width, max. on mass

Luminosity (<10⁻⁴) and center-of-mass (< 0.5 MeV) uncertainties to be controlled, but weaker constraints than on Z pole

Combined fit with optimized lumi fraction (f=0.4: <u>5 /ab at 157.1</u>, <u>7 /ab at 162.5</u>) \rightarrow precision m_W to 0.25 (stat) + 0.3 (syst) MeV (present 15 MeV) \rightarrow precision Γ_W to 1.2 (stat) + 0.3 (syst) MeV (present 42 MeV)

W kinematic reconstruction

Чï

11

Independent analysis on W mass and width using kinematic reconstruction techniques in WW \rightarrow qqlv events

- Profit from precise angle and velocity (β) measurements
- Run at all kinematically accessible energy points (WW, ZH and tt)
- Put conditions on detector requirements

 $\Delta m_W (\text{stat}) \sim 250 \text{ keV} \longrightarrow \text{similar as xsec measurement}$ $\Delta \Gamma_W (\text{stat}) \sim 350 \text{ keV} \longrightarrow \text{reduction factor 2-3}$

Limited by systematics (beam energy, resolution, fragmentation) \rightarrow constrain

	$\Delta m_{ m W}~({ m MeV}/c^2)$			$\Delta \Gamma_{\rm W} ({\rm MeV})$					
Source	$e\nu q\bar{q}$	μu q \bar{q}	$ au u q \bar{q}$	$\ell \nu q \bar{q}$	$e\nu q\bar{q}$	μu q \bar{q}	$ au u q \bar{q}$	$\ell \nu q \bar{q}$	
$e+\mu$ momentum	3	8	-	4	5	4	-	4	Ĺ
e+ μ momentum resoln	7	4		4	65	55	-	50	1
Jet energy scale/linearity	5	5	9	6	4	4	16	6	Ē
Jet energy resoln	4	2	8	4	20	18	36	22	
Jet angle	5	5	4	5	2	2	3	2	
Jet angle resoln	3	2	3	3	6	7	8	7	
Jet boost	17	17	20	17	3	3	3	3	Ĺ
Fragmentation	10	10	15	11	22	23	37	25	
Radiative corrections	3	2	3	3	3	2	2	2	
LEP energy	9	9	10	9	7	7	10	8	
Calibration $(e\nu q\bar{q} \text{ only})$	10	-	-	4	20	-	-	9	
Ref MC Statistics	3	3	5	2	7	7	10	5	
Bkgnd contamination	3	1	6	2	5	4	19	7	

W decay branching ratios

Precise measurement of W decays

- Precise control of lepton ID to avoid cross contamination in signal channels

(e.g. $\tau \rightarrow e, \mu$ vs. e, μ channels)

- Precision of 10⁻⁴ achievable (rel.)
- Simultaneously probe lepton and q/l universality to high precision (~ 10⁻⁴)

Decay mode relative precision	$B(W \rightarrow ev)$	$B(W\to \muv)$	$B(W\toTv)$	$B(W \rightarrow qq)$	W→µ
LEP2	1.5 %	1.4 %	1.8 %	0.4 %	
CMS	0.9 %	0.7 %	2 %	0.4 %	
FCCee	0.03 %	0.03 %	0.04 %	0.01 %	

Flavor tagging

- Allows precise measurement CKM matrix elements V_{cs}, V_{ub}, V_{cb}
- Extract strong coupling constant at WW-threshold

$$R_W = \frac{B_q}{1 - B_q} = \left(1 + \frac{\alpha_S(m_W^2)}{\pi}\right) \sum_{i=u,c;j=d,s,b} |V_{ij}|^2$$

$$\rightarrow$$
 Δ $\alpha_{\rm S}({\rm m_W})$ ~ 3x10⁻⁴ (abs)
→ Statistically dominated

Top mass and width measurement

Top mass and width measurements similar as WW line-shape

Though more energy points needed:

- Relative large uncertainty on top mass (+/- 0.5 GeV)
- Need to constrain shape in optimal way
- Possible to constrain backgrounds (below) and ttH (above)

 \rightarrow Multipoint scan in 5 GeV window [340, 345], each ~ 25 /fb

 $\rightarrow \Delta m_{t} \text{ (stat)} \sim 17 \text{ MeV}$

 $\rightarrow \Delta \Gamma_{t}$ (stat) ~ 45 MeV

To date: theoretical QCD errors order of 40 MeV for mass and width

Higgs physics at FCCee

Higgs-pole at 240 GeV

- Higgs–strahlung dominant: $e^+e^- \rightarrow ZH$
- Precise Higgs mass measurement up to ~ 5 MeV
- Measurement of **decay-mode-independent xsec** up to

% level, sensitive to new physics ${\rm H} \rightarrow {\rm invisible}$

- Higgs width extracted from $H \rightarrow ZZ$ at % level

Top threshold at 365 GeV

- Opens significance for WW fusion: $e^+e^- \to WWvv \to Hvv$
- Significant reduction in couplings and width

Combined performance at both energy points

- Higgs coupling precision < % level
- In particular, exotic Higgs decays constraint to < 1 %
- Probing CP violation using $H \rightarrow \tau \tau$ phase
- \rightarrow See dedicated talk Thursday by S. Braibant

Summary

Rich physics programme at Z-threshold and higher energies

- FCC delivers excellent precision on various EWK parameters with improvements of 1-2 orders of magnitude
- Combined results at all energy thresholds provides unique closure tests for SM
- \rightarrow Ongoing efforts with several analyses to explore and evaluate physics potential
- → Feedback towards detector and machine
 R&D for systematic uncertainty reduction on
 key measurements
- \rightarrow Work on theoretical side needed to cope with experimental level of accuracy

Backup

FCCee Physics Performance overview

Observable	present	FCC-ee	FCC-ee	Comment and
	value \pm error	Stat.	Syst.	leading exp. error
m _Z (keV)	91186700 ± 2200	4	100	From Z line shape scan
				Beam energy calibration
$\Gamma_{\rm Z} \ ({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan
				Beam energy calibration
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak
				Beam energy calibration
$1/\alpha_{\rm QED}({\rm m_Z}^2)(\times 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak
				QED&EW errors dominate
R_{ℓ}^{Z} (×10 ³)	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons
				acceptance for leptons
$\alpha_{\rm s}({\rm m}_{\rm Z}^2)~(\times 10^4)$	1196 ± 30	0.1	0.4-1.6	from R_{ℓ}^{Z} above
$\sigma_{\rm had}^0 (\times 10^3) ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross section
				luminosity measurement
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
$R_{\rm b} (\times 10^6)$	216290 ± 660	0.3	< 60	ratio of bb to hadrons
				stat. extrapol. from SLD
$A_{FB}^{b}, 0 (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	τ polarization asymmetry
12				τ decay physics
τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	radial alignment
τ mass (MeV)	1776.86 ± 0.12	0.004	0.04	momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38 ± 0.04	0.0001	0.003	e/μ /hadron separation
m _W (MeV)	80350 ± 15	0.25	0.3	From WW threshold scan
				Beam energy calibration
$\Gamma_{\rm W} ~({\rm MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan
				Beam energy calibration
$\alpha_{\rm s}({ m m}_{ m W}^2)(imes 10^4)$	1170 ± 420	3	small	from $\mathbf{R}^{\mathbf{W}}_{\ell}$
$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis. to leptonic
				in radiative Z returns
$m_{top} (MeV/c^2)$	172740 ± 500	17	small	From tt threshold scan
				QCD errors dominate
$\Gamma_{\rm top} \ ({\rm MeV/c}^2)$	1410 ± 190	45	small	From tt threshold scan
-				QCD errors dominate
$\lambda_{\rm top}/\lambda_{\rm top}^{\rm SM}$	1.2 ± 0.3	0.10	small	From tt threshold scan
				QCD errors dominate
ttZ couplings	$\pm 30\%$	0.5 - 1.5%	small	From $\sqrt{s} = 365 \text{GeV}$ run

ArXiv 2106.13885