

Introduction

- FCNC in top-Higgs-quark (up or charm) interaction > Highly suppressed in the SM due to GIM mechanism > Branching fractions can be improved up to 10⁻³~10⁻⁵ in BSM ► Good window to new physics considering large top quark mass and Yukawa coupling of Higgs boson and fermions
- Data taken by the CMS detector at LHC during Run2 (2017-8) are newly analyzed and combined with 2016 results [2]

Datasets and event selections

- Data: Final state with single muon or electron, 101 fb⁻¹
- SM backgrounds: tt, ttV/H, single top, V+jets, VV, QCD (V=W,Z)
- Signal: Single top (ST) and $t\bar{t}$ (TT) FCNC, $H \rightarrow b\bar{b}$ decay

 $\mathcal{L} = \sum_{q=u.c} \frac{g}{\sqrt{2}} \,\overline{\mathfrak{t}} \,\kappa_{\mathrm{Hqt}} (f_{\mathrm{Hq}}^{\mathrm{L}} P_{\mathrm{L}} + f_{\mathrm{Hq}}^{\mathrm{R}} P_{\mathrm{R}}) q \mathrm{H} + \mathrm{h.c.}$

 \triangleright Assuming anomalous coupling κ for Hut and Hct channel

2000000000

ST FCNC, 1 lepton + 3 jets

TT FCNC, 1 lepton + 4 jets

• Selection: 1 isolated lepton, \geq 3 jets and \geq 2 b jets ➢Categorization: b2j3, b3j3, b2j4, b3j4, and b4j4

Event reconstruction (1)

• Jet assignment with Deep Neural Network (DNN) \succ Targeting ST, TTFCNC, and SM tt hypotheses >Well reconstructed jet permutations

vs all the other combinations, using MC samples ▶ Residual network [3]: Boost training and prevent loss of informat ion when using many hidden layers

 \succ Trained for all jet categories and additionally for b4j4 category to deal with small sample size

Search for tHq flavor-changing neutral current interaction in $H \rightarrow b\overline{b}$, lepton+jets channel with CMS Run2 data

Jiwon Park, on behalf of CMS Collaboration | Hanyang University, jiwon.park@cern.ch EPS-HEP Conference, July 26-30, 2021

Well reconstructed jet permutation

Other permutations

Event reconstruction (2)

- and SM tt (right) hypothesis

>Leading uncertainties: b tagging and matrix element scale ► Total uncertainty: 13-34%, depending on jet category

Results

- Exclusion limits are set

- $>B(t->Hu) < 7.9 \times 10^{-4} (1.1 \times 10^{-3})$ $>B(t->Hc) < 9.4 \times 10^{-4} (8.6 \times 10^{-4})$
- branching fractions

$$\kappa_{\rm Hqt}^2 = \mathcal{B}(t \to Hq)_{\overline{f}}$$

References

[1] CMS Collaboration, CMS-PAS-TOP-19-002 [2] CMS Collaboration, JHEP 06 (2018) 102 [3] K. He, X. Zhang, et al., arXiv:1512.03385 [4] CMS Collaboration, CMS-PAS-TOP-20-007

• Observed (expected) limits on branching fraction (95% C.L.)

• 1D limits are interpolated by assuming linear relationship between

• Limits are improved by factor 3-6 compared with 2016 results • The most stringent limits on tHq FCNC, $H \rightarrow b\overline{b}$ channel • Reaches similar order of limits compared to $H \rightarrow \gamma \gamma$ channel [4]