Study of e^+e^- annihilation into hadrons at low energies with ISR at BABAR

Vladimir Druzhinin for BABAR Collaboration Budker INP, Novosibirsk, Russia July 26, 2021

EPS-HEP2021

BABAR low-energy hadron cross sections

BABAR performs intensive study of e⁺e⁻ annihilation at low energies using the ISR technique.

The mass spectrum of the hadronic system in the reaction $e^+e^- \rightarrow f\gamma$ is related to the cross section of the reaction $e^+e^- \rightarrow f$.

3.5

2E, GeV

 $\pi^{+}\pi^{-}\gamma$

 $3\pi^{+}3\pi^{-}$ ^{*0}K⁺⁻π⁻⁺

K⁺K⁻K⁺K K⁺K⁻π⁰

K⁺K⁻π⁰π⁰

We present

- $e^+e^- \rightarrow \pi^+\pi^-\pi^0$. Update with full BABAR data set. 5-fold increase in statistics. Preliminary result.
- $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0\pi^0$, $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0\eta$. First measurement. Phys. Rev. D 103, 092001 (2021).
- $e^+e^- \rightarrow \pi^+\pi^-4\pi^0$, $e^+e^- \rightarrow \pi^+\pi^-3\pi^0\eta$. First measurement. Preliminary results.

$$e^+e^- \rightarrow \pi^+\pi^-\pi^0$$

The process $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ gives the second largest contribution into $a_{\mu}^{had,LO-VP}$ and its error.

- ✓ Previous BABAR measurement (Phys. Rev. D 70 (2004) 072004) was based on 1/5 of the existing data set. The $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section was measured in the range 1.05-3 GeV.
- In the new analysis we measure the cross section also below 1.05 GeV, in the region of the ρ, ω, and φ resonances.
- ∠_{2π} ✓ Currently the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ contribution to a_µ^{had,LO-VP} is known with about 3% accuracy. We improve the accuracy to about 1.5%.

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$

- All final particles are detected.
- Events are selected using a kinematic fit
- Several additional cuts decrease background by a factor of 2.
- Remaining ISR and qq background is subtracted using simulation normalized to data.
- Above 1.1 GeV there is a sizable FSR background from the e⁺e⁻ → a₁γ, a₂γ processes. This background is estimated using pQCD with 100% uncertainty. Near 1.3 GeV it reaches about 8%.

$\pi^+\pi^-\pi^0$ mass spectrum below 1.1 GeV

- Below 1.1 GeV, the mass spectrum has sharp structure; unfolding is required to obtain the true spectrum.
- The result depends strongly on the assumed mass resolution.
- The ω and φ widths are well known: use the data to correct the simulated resolution function.
- The tails of the resolution depend on χ² of the kinematic fit used for event selection: try more than one cut value.

Fit to the 3π mass spectrum

- ➤ The measured mass spectrum is fitted by the VMD model with ω(782)+ω(1420)+ω(1680)+φ(1020) resonances and the rare ρ(770)→3π decay. The ω(782) and φ widths are fixed to PDG values.
- For χ² < 20 (nominal result), we obtain a good fit with additional Gaussian smearing: $\sigma_s = 1.5\pm0.2$ MeV, $m_{\omega} m_{PDG} = 0.042\pm0.055$ MeV, $m_{\phi} m_{PDG} = 0.095 \pm 0.084$ MeV.
- For $\chi^2 < 40$ (cross check), we also need a Lorentzian smearing to describe the tails (its fraction is (0.7±0.2)%, γ =63±35 GeV). The fit gives consistent results for other parameters.
- > The data cannot be described without the $\rho(770)$.

Physical fit parameters

$$\Gamma(\omega \to e^+ e^-) \mathcal{B}(\omega \to \pi^+ \pi^- \pi^0) = (0.5698 \pm 0.0031 \pm 0.0082) \text{ keV}$$

$$\Gamma(\phi \to e^+ e^-) \mathcal{B}(\phi \to \pi^+ \pi^- \pi^0) = (0.1841 \pm 0.0021 \pm 0.0080) \text{ keV}$$

> The fitted parameters for ω and ϕ are in reasonable agreement with the world average values: 0.557±0.011 keV and 0.1925±0.0043 keV.

$$\mathcal{B}(\rho \to 3\pi) = (0.88 \pm 0.23 \pm 0.30) \times 10^{-4}$$
$$\phi_{\rho} = -(99 \pm 9 \pm 15)^{\circ}.$$

➤ The significance of ρ → 3π is greater than 6σ
➤ The BABAR results for B(ρ → 3π) and φ_ρ agree with the SND measurement: $B(\varrho → 3π) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$ SND: Phys.Rev.D $B(\varrho → 3π) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$ SND: Phys.Rev.D $B(\varrho → 3π) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$ SND: Phys.Rev.D $B(\varrho → 3π) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$ SND: Phys.Rev.D $B(\varrho → 3π) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$ SND: Phys.Rev.D $B(\varrho → 3\pi) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$ SND: Phys.Rev.D $B(\varrho → 3\pi) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$ SND: Phys.Rev.D $B(\varrho → 3\pi) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$ SND: Phys.Rev.D $B(\varrho \to 3\pi) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$ SND: Phys.Rev.D $B(\varrho \to 3\pi) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$ SND: Phys.Rev.D $B(\varrho \to 3\pi) = (1.01^{+0.54}_{-0.36} \pm 0.34) \times 10^{-4} \text{ and } -(135^{+17}_{-13} \pm 9)^{\circ}.$

Comparison with existing cross section data

- At the ω the difference between the SND and BABAR is about 2%, well below the systematic uncertainty \checkmark (3.4% for SND and 1.4% for BABAR). The CMD-2 points lie about 7% below zero. The CMD-2 statistical and systematic uncertainties are 1.8% and 1.3%, respectively. So, the difference between CMD-2 and BABAR is about 2.7σ.
- \checkmark At the ϕ the CMD-2 and SND data with systematic uncertainties of 2.5% and 5%, respectively, lie about 3% and 11% higher than the fit to the BABAR data. 26.07.2021 e+e- annihilation at BABAR 10

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section below 1.1 GeV

The systematic uncertainty at resonance peaks is about 1.3%.

e+e- annihilation at BABAR

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section above 1.1 GeV

Above 1.1 GeV there is no narrow structure, so no unfolding is performed.

The systematic uncertainty (4-15%) is dominated by the uncertainty of background subtraction.

The sizable difference between the SND [*Eur.Phys.J. C 80. 993 (2020)*] and BABAR measurements is observed near 1.25 GeV and 1.5 GeV. The SND systematic uncertainty is 4.4%.

26.07.2021

$$e^+e^- \rightarrow \pi^+\pi^-\pi^0$$
 contribution to a_μ

$M_{3\pi}~{ m GeV}/c^2$		$a_\mu^{3\pi} imes 10^{10}$
0.62 - 1.10	ary	$42.91 \pm 0.14 \pm 0.55 \pm 0.09$
1.10–2.00	elimina	$2.95 \pm 0.03 \pm 0.16$
< 2.00		$45.86 \pm 0.14 \pm 0.58$
< 1.80[1] DHMZ		$46.21 \pm 0.40 \pm 1.40$
< 1.97[50] KNT		46.74 ± 0.94
< 2[51] Y		44.32 ± 1.48

Uncertainty in $a_{\mu}^{3\pi}$ is improved by a factor of 2.

Cross sections for $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0\pi^0$

⇒π⁺π π⁺π π⁰π⁰n0), nb σ(e⁺e⁻-GeV q 0.8 ე 0.6 0.4 CMD-3

✓ First measurement of this cross section.
 ✓ Systematic uncertainty is about 10%.
 ✓ Below 2.5 GeV the cross section is dominated by the previously measured intermediate states with η meson (ωπ⁰η, π⁺π⁻2π⁰η, 2(π⁺π⁻)η) and ωπ⁺π⁻2π⁰. Above 2.5 GeV, (ρπ)π⁺π⁻2π⁰ channel is also seen.

Phys. Rev. D 103,

092001 (2021)

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0\pi^0$

- ✓ First measurement
- ✓ Systematic uncertainty is about 10%.

✓ The intermediate states π⁺π⁻π⁰η, ω3π⁰, (ρπ)3π⁰, and probably ρ⁺ρ⁻2π⁰ above 2.9 GeV are seen.
 ✓ Below 2 GeV the BABAR result on the π⁺π⁻π⁰η cross section agrees with previous SND and CMD-3 measurements.

$$e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0\eta$$
 and $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0\eta$

No previous measurements

Summary

- The cross section for the process $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ has been measured from the 0.62 to 3.5 GeV, using the ISR method. Near the maxima of the ω and ϕ resonances, it is measured with a systematic uncertainty of 1.3%.
- The leading-order hadronic contribution to the muon magnetic anomaly (45.86 ± 0.14 ± 0.58) × 10⁻¹⁰ from the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ channel (E<2 GeV) has been calculated. Its accuracy has been improved by a factor of about 2.
- The cross sections for the processes of $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0\pi^0$, $\pi^+\pi^-4\pi^0$, $2(\pi^+\pi^-)\pi^0\pi^0\eta$, $\pi^+\pi^-3\pi^0\eta$ have been measured for the first time.