Renormalization of the flavor-singlet axial-vector current and its anomaly at N^3LO in QCD

Long Chen

Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University

EPS-HEP2021, July 30

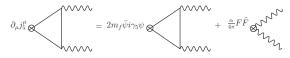
Ref. JHEP05 (2021) 087 [arXiv:2101.09479] with T. Ahmed and M. Czakon, and work in progress

The Adler-Bell-Jackiw anomaly

The anomalous axial-vector divergence equation [Adler 69; Bell, Jackiw 69]

$$\partial_{\mu}\,\bar{\psi}\,\gamma^{\mu}\gamma_{5}\,\psi = 2m_{f}\bar{\psi}\,i\gamma_{5}\,\psi \,-\,\frac{\alpha}{4\pi}\,\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}\,.$$

Diagrammatically,



The Adler-Bardeen theorem [Adler, Bardeen 69]: "one-loop" exact

- gauge/internal anomalies must cancel!
 - The Standard Model is anomaly free
 - ► Anomaly matching ['t Hooft et al. 80]
- global/external anomalies are allowed and important
 - ${f au} au \gamma \gamma$ decay [Steinberger 49; Sutherland, Veltman 67; Adler 69; Bell, Jackiw 69]
 - $U(1)_A/\eta'$ problem [Weinberg 75; 't Hooft 76]
 - ► Strong CP problem and Axion [Peccei, Quinn 77] ...

Calculating the axial anomaly in DR: the γ_5 issue

The axial anomaly

"vanishes" with translational invariant loop integrals and an anticommuting γ_5 .

In addition,

A fully anticommuting γ_5 is algebraically incompatible with the Dirac algebra in a general $D \neq 4$ dimensions.

Within the Dimensional Regularization, two classes of γ_5 prescriptions:

- A non-anticommuting γ₅ (constructively given)
 ['t Hooft, Veltman 72; Breitenlohner, Maison 77; Larin, Vermaseren 91 ...]
- An anticommuting γ_5 (with a careful re-definition of " γ_5 -trace") [Bardeen 72, Chanowitz et al. 79; Kreimer 90; Zerf 20 ...]

The γ_5 prescription in use

The HV/BM $_{[72,79]}$ prescription of γ_5 in dimensional regularization:

$$\begin{split} \gamma_5 &= \frac{i}{4!} \varepsilon_{\mu\nu\rho\sigma} \gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma \\ \gamma_\mu \gamma_5 &\to \frac{1}{2} \Big(\gamma_\mu \gamma_5 - \gamma_5 \gamma_\mu \Big) \, = \frac{i}{6} \varepsilon_{\mu\nu\rho\sigma} \gamma^\nu \gamma^\rho \gamma^\sigma \, , \end{split}$$

where the $e^{\mu\nu\rho\sigma}$ is treated outside the R-operation formally in D dimensions [Larin, Vermaseren 91; Zijlstra, Neerven 92] (conveniently called Larin's prescription).

The γ_5 no longer anticommutes with all γ^μ in D dimensions \Longrightarrow "spurious anomalous terms" calling for non-trivial UV renormalization [Chanowitz et al. 79; Trueman 79; Kodaira 79; Espriu, Tarrach 82; Collins 84; Larin, Vermaseren 91; Bos 92; Larin 93, ... 1

The properly renormalized singlet axial current reads

$$\begin{split} \left[J_5^{\mu}\right]_R \; &= \; Z_J \, \mu^{4-D} \, \bar{\psi}_B \, \gamma^{\mu} \gamma_5 \, \psi_B \\ &= \; Z_5^f \, Z_5^{ms} \, \mu^{4-D} \, \bar{\psi}_B \, \frac{-i}{3!} \epsilon^{\mu\nu\rho\sigma} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \, \psi_B \end{split}$$

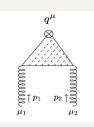
Form factor decomposition of the AVV amplitude

Determine UV Z_5 s via computing the 2-gluon matrix elements of $[\partial_\mu J_5^\mu]_R = a_s \, n_f \, T_F \, [F\tilde{F}]_R$ The 1PI AVV amplitude without external polarization vectors:

$$\Gamma^{\mu\mu_1\mu_2}_{lhs}(p_1,p_2) \equiv \int d^4x d^4y \, e^{-ip_1\cdot x - iq\cdot y} \, \langle \mathbf{o} | \hat{\mathbf{T}} \left[J_5^{\mu}(y) \, A_a^{\mu_1}(x) \, A_a^{\mu_2}(\mathbf{o}) \right] | \mathbf{o} \rangle |_{\text{amp}}$$

Form factor decomposition:

$$\begin{split} \Gamma^{\mu\mu_1\mu_2}_{lhs}(p_1,p_2) &= F_1 \, \epsilon^{\mu\,\mu_1\,\mu_2\,(p_2-p_1)} \\ &+ F_2 \, \left(p_1^{\mu_1} \epsilon^{\mu\,\mu_2\,p_1\,p_2} - p_2^{\mu_2} \epsilon^{\mu\,\mu_1\,p_1\,p_2} \right) \\ &+ F_3 \, \left(p_1^{\mu_2} \epsilon^{\mu\,\mu_1\,p_1\,p_2} - p_2^{\mu_2} \epsilon^{\mu\,\mu_2\,p_1\,p_2} \right) \\ q_\mu \Gamma^{\mu\mu_1\mu_2}_{lhs}(p_1,p_2) &= 2F_1 \, \epsilon^{\mu_1\,\mu_2\,p_1\,p_2} \, . \end{split}$$

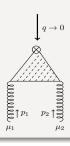


taking into account the odd parity and Bose symmetry w.r.t gluons $(p_1 \leftrightarrow p_2, \mu_1 \leftrightarrow \mu_2)$.

Projection at the zero momentum insertion limit

Despite $q_{\mu}\Gamma_{lhs}^{\mu\mu_1\mu_2}(p_1,-p_1)=$ o, the form factor F_1 is **not** zero if the p_1 is set **off-shell**.

$$\begin{split} \Gamma^{\mu\mu_1\mu_2}_{lhs}(p_1,-p_1) &= -{}_2F_1\,\epsilon^{\mu\,\mu_1\,\mu_2\,p_1}\,, \\ \mathcal{P}_{\mu\mu_1\mu_2} &= -\frac{1}{6\,p_1\cdot p_1}\,\epsilon_{\mu\mu_1\mu_2\nu}\,p_1^\nu\,, \\ \mathcal{M}_{lhs} &= \mathcal{P}_{\mu\mu_1\mu_2}\,\Gamma^{\mu\mu_1\mu_2}_{lhs}(p_1,-p_1) \propto -2F_1 \end{split}$$



With q = 0 and $p_1^2 \neq 0$:

- possible IR divergences nullified owing to the IR-rearrangement [Vladimirov 79]
- 4-loop massless propagator-type master integrals available [Smirnov, Tentyukov 10, Baikov, Chetyrkin 10; Lee, Smirnov, Smirnov 11]
- gauge-dependent $\mathcal{M} \Longrightarrow \mathsf{UV}$ renormalization of gauge parameter ξ !

Treatment of the operator $F\tilde{F}$

The axial-anomaly (topological-charge density) operator $F\tilde{F}$ with the Chern-Simons current K^{μ}

$$F\tilde{F} = \partial_{\mu}K^{\mu}$$

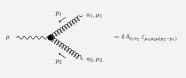
$$= \partial_{\mu} \left(-4 \epsilon^{\mu\nu\rho\sigma} \left(A^{a}_{\nu} \partial_{\rho} A^{a}_{\sigma} + g_{s} \frac{1}{3} f^{abc} A^{a}_{\nu} A^{b}_{\rho} A^{c}_{\sigma} \right) \right)$$

by the virtue of total antisymmetry of $\epsilon^{\mu\nu\rho\sigma}$ [Bardeen 74]. Unlike J_5^μ , the current K^μ is not gauge-invariant, and $\left[F\tilde{F}\right]_R=Z_{F\tilde{F}}\left[F\tilde{F}\right]_B+Z_{FJ}\left[\partial_\mu J_5^\mu\right]_B$.

The Feynman Rules in use:

$$\begin{split} \Gamma^{\mu\mu_1\mu_2}_{rhs}(p_{1},p_{2}) \; &\equiv \; \int d^{4}x d^{4}y \, e^{-ip_{1}\cdot x - iq\cdot y} \\ & \quad \langle \mathrm{o} | \hat{T} \left[K^{\mu}(y) \, A^{\mu_{1}}_{a}(x) \, A^{\mu_{2}}_{a}(\mathrm{o}) \right] | \mathrm{o} \rangle |_{\mathrm{amp}} \end{split}$$

$$\mathcal{M}_{rhs} \; = \; \mathcal{P}_{\mu\mu_{1}\mu_{2}} \, \Gamma^{\mu\mu_{1}\mu_{2}}_{rhs}(p_{1},-p_{1}) \, . \end{split}$$

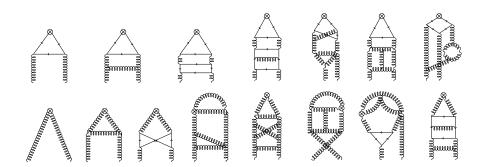


Feynman diagrams

The Work Flow:

- Generating Feynman diagrams
- Applying Feynman Rules,
 Dirac/Lorentz algebra, Color algebra
- ► IBP reduction of loop integrals
- ► Inserting Master integrals

Loop order	DiaGen		Qgraf	
	l.h.s.	r.h.s.	l.h.s.	r.h.s.
1	2	3	2	4
2	20	57	21	64
3	429	1361	447	1488
4	11302	37730	11714	40564



IBP reduction and master integrals

Loop integrals in diagrams, reduced by IBP [Tkachov 81; Chetyrkin, Tkachov 81];

Analytic results of p-master integrals, up to 4 loop [Baikov, Chetyrkin 10; Lee, Smirnov, Smirnov 12].

- DiaGen/IdSolver [Czakon] + Forcer [Ruijl, Ueda, Vermaseren]
 - ► Amplitude projection: about 3 + 6 days @ 24 cores (Intel[®] Xeon[®] Silver 4116)
 - ► Forcer (pre-solved IBP): about 12 + 24 hours @ 8 cores (Intel® Xeon® E3-1275 V2)
- QGRAF [Nogueira] + FORM [Vermaseren] + Reduze 2 [Manteuffel, Studerus] + FIRE [Smirnov] combined with LiteRed [Lee]
 - ► IBP (by Laporta): about one month @ 32 cores (Intel® Xeon® Silver 4216)
 - a few hundred GB RAM

At 4-loop: $\sim 10^5$ loop integrals in Feynman amplitudes reduced to 28 masters.

The analytical results were found to be identical between the two set-ups.

UV renormalization

$$\overline{\mathrm{MS}}: \quad \hat{a}_{\mathrm{S}} \ S_{\epsilon} = Z_{a_{\mathrm{S}}}(\mu^2) \, a_{\mathrm{S}}(\mu^2) \, \mu^{2\epsilon} \,, \quad a_{\mathrm{S}} \equiv \frac{\alpha_{\mathrm{S}}}{4\pi} = \frac{g_{\mathrm{S}}^2}{16\pi^2} \,, \quad S_{\epsilon} = (4\pi)^{\epsilon} \, e^{-\epsilon \gamma_{\mathrm{E}}}$$

By the multiplicative renormalizability of the QCD Lagrangian and of J_5^{μ} and K^{μ} :

$$\begin{split} \mathcal{M}_{lhs} &= Z_{J} Z_{3} \, \hat{\mathcal{M}}_{lhs} \, \big(\hat{a}_{s} \,, \, \hat{\xi}\big) \\ &= Z_{5}^{f} Z_{5}^{ms} \, Z_{3} \, \hat{\mathcal{M}}_{lhs} \, \big(Z_{a_{s}} \, a_{s} \,, \, \mathbf{1} - Z_{3} + Z_{3} \, \xi\big) \equiv Z_{5}^{f} \, \bar{\mathcal{M}}_{lhs} \\ \mathcal{M}_{rhs} &= Z_{F\tilde{F}} \, Z_{3} \, \hat{\mathcal{M}}_{rhs} \, \big(\hat{a}_{s} \,, \, \hat{\xi}\big) \, + \, Z_{FJ} \, Z_{3} \, \hat{\mathcal{M}}_{lhs} \, \big(\hat{a}_{s} \,, \, \hat{\xi}\big) \\ &= Z_{F\tilde{F}} \, Z_{3} \, \hat{\mathcal{M}}_{rhs} \, \big(Z_{a_{s}} \, a_{s} \,, \, \mathbf{1} - Z_{3} + Z_{3} \, \xi\big) \, + \, Z_{FJ} \, Z_{3} \, \hat{\mathcal{M}}_{lhs} \, \big(Z_{a_{s}} \, a_{s} \,, \, \mathbf{1} - Z_{3} + Z_{3} \, \xi\big) \end{split}$$

where the QCD gauge-fixing parameter ξ is defined via $\frac{i}{k^2}\left(-g^{\mu\nu}+\xi\,\frac{k^\mu k^\mu}{k^2}\right)$.

- ▶ The renormalization $1 \hat{\xi} = Z_3(1 \xi)$ is crucial here.
- ▶ The overall wavefunction Z_3 is not necessary (for determining Z_5).

Results on $Z_I \equiv Z_5^{ms} Z_5^f$ and $Z_{F\tilde{F}}$

The Z_5^{ms} extracted from the ϵ poles of the 4-loop $\hat{\mathcal{M}}_{lhs}$:

$$\begin{split} Z_5^{ms} \; &= \; 1 + a_s^2 \left\{ C_A C_F \left(\frac{22}{3\epsilon} \right) + C_F n_f \left(\frac{5}{3\epsilon} \right) \right\} \\ &+ \; a_s^3 \left\{ C_A^2 C_F \left(\frac{3578}{81\epsilon} - \frac{484}{27\epsilon^2} \right) + C_A C_F n_f \left(\frac{149}{81\epsilon} - \frac{22}{27\epsilon^2} \right) + C_A C_F^2 \left(- \frac{308}{9\epsilon} \right) \right. \\ &+ C_F^2 n_f \left(- \frac{22}{9\epsilon} \right) + C_F n_f^2 \left(\frac{20}{27\epsilon^2} + \frac{26}{81\epsilon} \right) \right\}. \end{split}$$

agreement with [Larin, Vermaseren, 91] was found.

The **finite** DR-independent Z_s^f :

$$\begin{split} Z_5^f \; &=\; \mathbf{1} + a_s \Big\{ - 4 C_F \Big\} + a_s^2 \Big\{ C_A C_F \Big(- \frac{\mathbf{107}}{9} \Big) + C_F^2 \Big(\mathbf{22} \Big) + C_F n_f \Big(\frac{3\mathbf{1}}{18} \Big) \Big\} \\ &+\; a_s^3 \Big\{ C_A^2 C_F \Big(56 \zeta_3 - \frac{2\mathbf{147}}{27} \Big) + C_A C_F^2 \Big(\frac{5834}{27} - \mathbf{160} \zeta_3 \Big) + C_A C_F n_f \Big(\frac{\mathbf{110}}{3} \zeta_3 - \frac{\mathbf{133}}{8\mathbf{1}} \Big) \\ &+ C_F^3 \Big(96 \zeta_3 - \frac{370}{3} \Big) + C_F^2 n_f \Big(\frac{497}{54} - \frac{\mathbf{104}}{3} \zeta_3 \Big) + C_F n_f^2 \Big(\frac{3\mathbf{16}}{8\mathbf{1}} \Big) \Big\} \,. \end{split}$$

The first application of the new result:

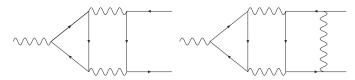
the 3-loop singlet contribution to the massless axial quark form factor [Gehrmann, Primo 21]

In addition, $Z_{F\tilde{F}}=Z_{a_s}$ is verified to 4-loop order for the first time (recently proved! [Lüscher, Weisz 21])

The singlet contributions to the axial-FF at 3 loops

QCD corrections to γ^*/W -mediated Drell-Yan (DY) processes have been recently computed to N^3LO [Duhr, Dulat, Mistlberger 20; Chen, Gehrmann, Glover, Huss, Yang, Zhu 21]

The so-called *pure-singlet* contributions, needed for *Z-DYs*, start from 2-loop order:



The IR-subtracted finite remainder at 3-loop order [Gehrmann, Primo 21]:

$$\begin{split} \mathcal{F}_{A,\mathrm{PS}}^{(3,\mathrm{finite})} &= \, C_F^2 \left(\frac{409}{2} - 66 L_\mu - \frac{16\pi^2}{3} - \frac{8\pi^4}{15} \right) \\ &+ C_F n_l \left(\frac{469}{9} - \frac{76}{3} L_\mu + \frac{8\pi^2}{9} L_\mu + 4 L_\mu^2 - \frac{40\pi^2}{27} \right) \\ &+ C_F C_A \left(-\frac{7403}{18} + \frac{538}{3} L_\mu - \frac{44\pi^2}{9} L_\mu - 22 L_\mu^2 + 62 \zeta_3 + \frac{385\pi^2}{27} - \frac{17\pi^4}{90} \right) \,, \end{split}$$

in $n_l = 5$ massless QCD (where $L_{\mu} = \ln(-q^2/\mu^2)$).

Contributions from the **top**-loop diagrams must be included to cancel the "unphysical" L_{μ} ...

Summary and Outlook

- We have described a set-up for computing the renormalization constants of axial-vector currents in QCD with a non-anticommuting γ_5 in dimensional regularization.
- We have extended the result of Z_J , and in particular, of the finite non- $\overline{\rm MS}$ factor Z_5^f , of the flavor-singlet axial-vector current to $\mathcal{O}(\alpha_s^3)$.
- We have verified explicitly up to 4-loop order $Z_{F\tilde{F}} = Z_{\alpha_s}$ in the $\overline{\rm MS}$ scheme, expected based on the non-Abelian extension of the Adler-Bardeen theorem.
- Our result has found its first practical application in the computation of the 3-loop singlet contribution to the massless axial quark form factor [Gehrmann, Primo 21].
- It could be used also in places such as singlet contributions to the polarized structure functions in deep-inelastic scattering...

Summary and Outlook

- We have described a set-up for computing the renormalization constants of axial-vector currents in QCD with a non-anticommuting γ_5 in dimensional regularization.
- We have extended the result of Z_J , and in particular, of the finite non- $\overline{\rm MS}$ factor Z_5^f , of the flavor-singlet axial-vector current to $\mathcal{O}(\alpha_s^3)$.
- We have verified explicitly up to 4-loop order $Z_{F\tilde{F}} = Z_{\alpha_s}$ in the MS scheme, expected based on the non-Abelian extension of the Adler-Bardeen theorem.
- Our result has found its first practical application in the computation of the 3-loop singlet contribution to the massless axial quark form factor [Gehrmann, Primo 21].
- It could be used also in places such as singlet contributions to the polarized structure functions in deep-inelastic scattering...

THANK YOU