
Zoltán Trócsányi
with Sergey Alekhin, Adam Kardos and Sven-Olaf Moch

  Eötvös University and MTA-DE Particle Physics Research Group
based on arXiv:2104.02400 (EPJC)

July 29, 2021

Comparison of public codes for Drell-Yan 
processes at NNLO accuracy



2

Experimental fiducial measurements of Drell-Yan 
cross-sections have now reached <0.5% accuracy — 
apart from the luminosity uncertainty arXiv:1612.03016 
(ATLAS), arXiv: 1909.0413 (CMS)

Motto: precise measurements require 
precise theoretical predictions

cross-section measurement precision of 0.32% is reached for the NC channel and of 0.5% (0.6)% for the
W+ (W�) channels. The new Z (W) fiducial cross-section measurements are 10 (3.5) times more precise
than the previous ATLAS measurements [1] when considering the statistical and systematic uncertainties
added in quadrature.

�fid
W!`⌫ [pb]

W+ ! e+⌫ 2939 ± 1 (stat) ± 28 (syst) ± 53 (lumi)
W+ ! µ+⌫ 2948 ± 1 (stat) ± 21 (syst) ± 53 (lumi)
W+ ! `+⌫ 2947 ± 1 (stat) ± 15 (syst) ± 53 (lumi)

W� ! e�⌫̄ 1957 ± 1 (stat) ± 21 (syst) ± 35 (lumi)
W� ! µ�⌫̄ 1964 ± 1 (stat) ± 13 (syst) ± 35 (lumi)
W� ! `�⌫̄ 1964 ± 1 (stat) ± 11 (syst) ± 35 (lumi)

W ! e⌫ 4896 ± 2 (stat) ± 49 (syst) ± 88 (lumi)
W ! µ⌫ 4912 ± 1 (stat) ± 32 (syst) ± 88 (lumi)
W ! `⌫ 4911 ± 1 (stat) ± 26 (syst) ± 88 (lumi)

�fid
Z/�⇤!`` [pb]

Z/�⇤ ! e+e� 502.7 ± 0.5 (stat) ± 2.0 (syst) ± 9.0 (lumi)
Z/�⇤ ! µ+µ� 501.4 ± 0.4 (stat) ± 2.3 (syst) ± 9.0 (lumi)
Z/�⇤ ! `` 502.2 ± 0.3 (stat) ± 1.7 (syst) ± 9.0 (lumi)

Table 7: Integrated fiducial cross sections times leptonic branching ratios in the electron and muon channels and
their combination with statistical and systematic uncertainties, for W+, W�, their sum and the Z/�⇤ process meas-
ured at

p
s = 7 TeV. The Z/�⇤ cross section is defined for the dilepton mass window 66 < m`` < 116 GeV. The

common fiducial regions are defined in Section 2.3. The uncertainties denote the statistical (stat), the experimental
systematic (syst), and the luminosity (lumi) contributions.

Excluding the common luminosity uncertainty, the correlation coe�cients of the W+ and Z, W� and Z,
and W+ and W� fiducial cross-section measurements are 0.349, 0.314, and 0.890, respectively. Including
the luminosity, all three measurements are highly correlated, with coe�cients of 0.964, 0.958 and 0.991,
respectively. Table 8 presents four ratios that may be obtained from these fiducial integrated Z/�⇤ and W±

cross sections, where the luminosity uncertainty as well as other correlated uncertainties are eliminated
or strongly reduced. The precision of these ratio measurements is very high with a total experimental
uncertainty of 0.4% for the W+/W� ratio and 0.5% for the W±/Z ratio.

Rfid
W+/W� 1.5006 ± 0.0008 (stat) ± 0.0037 (syst)

Rfid
W/Z 9.780 ± 0.006 (stat) ± 0.049 (syst)

Rfid
W+/Z 5.869 ± 0.004 (stat) ± 0.029 (syst)

Rfid
W�/Z 3.911 ± 0.003 (stat) ± 0.021 (syst)

Table 8: Ratios of integrated fiducial CC and NC cross sections obtained from the combination of electron and
muon channels with statistical (stat) and systematic (syst) uncertainties. The common fiducial regions are defined
in Section 2.3.

36

ATLAS fiducial cross sections at 7 TeV 
in the 66 < mll/GeV < 116 mass window
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Experimental fiducial measurements of Drell-Yan 
cross-sections have now reached <0.5% accuracy — 
apart from the luminosity uncertainty (ATLAS: 1612.03016, 
CMS: 1909.0413)

QCD fixed-order predictions agree in full phase 
space 

but they differ at NNLO by as much as 1% in fiducial 
regions with symmetric cuts on the leptons 

Motto: precise measurements require 
precise theoretical predictions
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Not necessary, but helpful, so chose two sets of data

ATLAS data at Ecm = 7 TeV as pseudorapidity distributions 
for the                                                          arXiv:1612.03016

decay electron or muon (W±-production) and 
decay lepton- pair (Z/γ∗-production)
transverse momenta pT and the pseudo-rapidities ηl of 
the decay leptons are subject to fiducial cuts  

DØ data Ecm = 1.96 TeV on W±-production       arXiv:1412.2862

measures the electron charge asymmetry distributions
and their dependence on the electron pseudo-rapidity 
both symmetric as well as staggered fiducial cuts are 
applied on the transverse momenta and pseudo-rapidities 
of the electron and the neutrino

Data sets
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Important for precision comparison

Gµ scheme with input values GF, MZ, MW (sin2θW,  α(MZ) are 
output), which minimizes the impact of NLO electroweak 
corrections

MS factorization scheme with nf = 5 light flavors  
ABMP16 PDF with α(5)(MZ) = 0.1147, µR = µF = MV 

Parameters

space for the fiducial cuts of the LHC and Tevatron data considered in the previous section. We
conclude in Sec. IV.

II. BENCHMARK COMPUTATIONS

A. Set-up and validation

The set-up for benchmarking available QCD predictions for W±- and Z-boson hadro-production
cross sections up to NNLO in QCD in the fiducial phase space of the experimental measurement
contains three aspects: the choice of the data sets, the list of input parameters and the selection of
the NNLO QCD codes for the comparison of the theoretical predictions.

We choose two sets of data on W±- and Z-boson production collected by the ATLAS experiment
at the LHC and the DØ experiment at the Tevatron, respectively, which are statistically significant
in current fits of PDFs.

• The ATLAS data set for the W±- and Z/�⇤-production cross sections [6] measured at a
center-of-mass energy of

p
s = 7 TeV at the LHC. These data are given in form of pseudo-

rapidity distributions for the decay electron or muon (W±-production) and the decay lepton-
pair (Z/�⇤-production), respectively. The transverse momenta pl

T and the pseudo-rapidities
⌘l of the decay leptons are subject to fiducial cuts. The cross sections for Z/�⇤-production
are measured at central as well as at forward pseudo-rapidities.

• The data obtained by DØ on W±-boson production at
p

s = 1.96 TeV at the Tevatron [8]
measures the electron charge asymmetry distributions and their dependence on the electron
pseudo-rapidity. These data also probe forward kinematics. Also, the DØ data apply fiducial
cuts, both symmetric as well as staggered, on the transverse momenta pl,⌫

T of the electron
and the neutrino and on their pseudo-rapidities.

Another data set by ATLAS, the measurement of the muon charge asymmetry in W±-boson
production at

p
s = 8 TeV at the LHC [9] has similar experimental precision as the chosen data

set [6] collected at
p

s = 7 TeV and also largely overlaps in kinematics. Similar considerations
apply to data from CMS and LHCb, e.g., [10, 11] Hence, we do not include these data in the
benchmark comparison.

We use the Gµ scheme with input values GF , MZ , MW and with sin2(✓W) and the QED coupling
↵(MZ) as output values. This scheme minimizes the impact of NLO electroweak corrections, see
e.g. [12]. In detail, our SM input parameters are [13]

Gµ = 1.16637⇥10�5 GeV�2 ,
MZ = 91.1876 GeV , �Z = 2.4952 GeV ,
MW = 80.379 GeV , �W = 2.085 GeV ,

(1)

and for the relevant CKM parameters

|Vud | = 0.97401 , |Vus| = 0.2265 ,
|Vcd | = 0.2265 , |Vcs| = 0.97320 ,
|Vub| = 0.00361 , |Vcb| = 0.04053 . (2)

The computations are performed in the MS factorization scheme with n f = 5 light flavors. There-
fore we take the n f = 5 flavor PDFs of ABMP16 [14, 15] as an input together with the value of
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DYNNLO (version 1.5)            http://theory.fi.infn.it/grazzini/dy.html

uses qT-subtraction

FEWZ (version 3.1)     https://www.hep.anl.gov/fpetriello/FEWZ.html

uses fully local subtraction scheme

MATRIX (version 1.0.4)                   https://matrix.hepforge.org/

uses qT-subtraction and scattering amps from OpenLoops  

MCFM (version 9.0)                               https://mcfm.fnal.gov/

uses N-jettiness subtraction

Slicing parmeters:
- rcut for MATRIX as a cut on qT
- τcut for MCFM on jettiness

Public codes

http://theory.fi.infn.it/grazzini/dy.html
https://www.hep.anl.gov/fpetriello/FEWZ.html
https://matrix.hepforge.org/
https://mcfm.fnal.gov/
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Consistency of parameters: agreement at O(10−5) at LO

Validation at LO and NLO
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DYNNLO provides predictions 

accurate typically up to a few per mill and deviate in 
particular for distributions with challenging kinematics

Validation at LO and NLO
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Consistency of parameters: agreement at O(10−5) at LO

At NLO MATRIX, MCFM and FEWZ are in agreement

DYNNLO provides predictions 

accurate typically up to a few per mill and deviate in 
particular for distributions with challenging kinematics

with deviations displaying a particular pattern as a 
function of the (di-)lepton pseudo-rapidities

see Appendix for details

Validation at LO and NLO
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Comparison of NNLO cross sections
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FIG. 8: Compilation of the NNLO theory predictions of Figs. 5–7. Only the results with the smallest
slicing cuts are plotted: MATRIX with rcut = 0.15% for W±! l±⌫ and rcut = 0.05% for Z! l+l� production;
MCFM with ⌧cut = 4 ·10�4.

forward Z/�⇤-production. In the first bins of the latter the deviations grow up to O(20%). As
discussed, MCFM uses N-jettiness subtraction and allows for di↵erent ⌧cut choices for the jettiness
slicing parameter. We use the default value, ⌧cut = 6 · 10�3 and two smaller ones, ⌧cut = 1 · 10�3

and ⌧cut = 4 · 10�4, the limitation being here the goal to reach an integration accuracy of a few
units in 10�4 in reasonable time 9 with given computational resources. The decreasing values of
⌧cut display the expected trend clearly in Fig. 7, namely, the smaller the choice of ⌧cut, the closer
the MCFM result to that by FEWZ. Nevertheless, the di↵erences remain. In order to compare those
di↵erences easier, we collect the best prediction for each code at NNLO in a single figure in Fig. 8.

Given the level of agreement among the predictions at NLO accuracy, the deviations observed
in Figs. 5–7 need to be put into perspective by looking at the size of the pure NNLO corrections
alone, which we define bin-by-bin through the deviation of the NNLO K-factor from one, �NNLO =
(�NNLO/�NLO � 1). Typically pure NNLO corrections �NNLO are rather small, and we illustrate
those only in the case of largest corrections. For W+-production �NNLO amounts to a few per mill
for ⌘l . 1 and grows to O(1� 2%) for larger rapidities ⌘l & 1, while instead for W�-production
�NNLO is of the size O(1%) for ⌘l . 1 and increases to a few per cent for larger rapidities. For
the central Z/�⇤-production the NNLO corrections �NNLO are only a few per mill for ⌘ll . 1.5
and grow to O(2� 3%) for larger di-lepton rapidities. Thus, the observed di↵erences between
considered codes are actually similar in size to that of the pure NNLO corrections, even exceeding
them at times. The case of forward Z/�⇤-production features larger higher order corrections and
will be discussed in detail next. The comparable size of the NNLO corrections and di↵erences

9 The required CPU times for the MCFM runs with ⌧cut = 4 ·10�4 were roughly 180.000 hrs for W±-boson, 160.000 hrs
for central and approximately 50.000 hrs for forward Z-boson production.

9

NNLO QCD cross sections for inclusive pp→W±+X→l±ν+X and 
pp→Z/γ*+X→l+l—+X as function of pseudo-rapidity, 

fiducial cuts are indicated in the plots
rmin = 0.15(0.05)%  for pp→W± (Z/γ*) (MATRIX) and τcut = 4 · 10−4 (MCFM)

(see Appendix for more details)
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uncertainties in the cross sections from the numerical 
Monte Carlo integration have been limited to few units in 
10−4 and are negligible in all cases

Differences at NNLO
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uncertainties in the cross sections from the numerical 
Monte Carlo integration have been limited to few units in 
10−4 and are negligible in all cases
for most of the distributions considered, the pure NNLO 
QCD corrections on top of the NLO ones are rather small, 
often in the range of O(1%) 
at NNLO accuracy we found differences among the 
predictions comparable in size to the NNLO correction 
itself 

deviations among the predictions are not smaller, often even 
of the same size or larger, hinting towards a significant 
intrinsic uncertainty in the computation of the NNLO QCD 
corrections for those observables 

the deviations share certain patterns across the range of 
pseudo-rapidities in the considered distributions

Differences at NNLO
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global slicing methods neglect power corrections, hence one 
may assume that those are at least partly responsible for the 
observed differences 

Emergence of the power corrections
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global slicing methods neglect power corrections, hence one 
may assume that those are at least partly responsible for the 
observed differences 

the cross section can be decomposed as

Emergence of the power corrections

The definitions of ⌧ in eqs. (5) and (6) vanish at Born level and resolve additional radiation in an
infrared-safe manner, so that the phase space integration for the cross section can be written as

� =

Z
d⌧

d�
d⌧
=

Z ⌧cut

d⌧
d�
d⌧
+

Z

⌧cut

d⌧
d�
d⌧
= �(⌧cut)+

Z

⌧cut

d⌧
d�
d⌧
, (7)

where ⌧cut is the cut for the slicing of the phase space. The dependence of d�/d⌧ on ⌧ can be
predicted from the universal factorization of QCD in soft and collinear limits. It has the structure

d�
d⌧
⇠ �(⌧)+

X

i

"
lni ⌧

⌧

#

+

+
X

j
⌧p�1 ln j ⌧+O(⌧p) , (8)

where the +-distributions are the well-known leading threshold logarithms and the terms propor-
tional to ⌧p�1 with p > 0 are integrable and denote power corrections in the soft and collinear limit.
From the analytical integration one obtains for �(⌧cut) schematically

�(⌧cut) ⇠ 1+
X

i
lni+1 ⌧cut+

X

j
⌧p

cut ln j ⌧cut+O(⌧p+1
cut ) . (9)

The crucial point to stress here is the scaling behavior of the power corrections ⌧p
cut, i.e. the value

of the exponent p. For the production of a stable gauge boson V , p takes positive integer values,
while the subsequent decay with cuts on the leptonic final state changes the scaling of the power
corrections [31], such that p rises in steps of half-integers, i.e., p = 1/2,1,3/2 and so on. This will
be discussed in more detail below.

The scaling of the power corrections has consequences for the particular subtraction scheme,
which is then implemented via a global subtraction term �sub(⌧cut) as

� = �sub(⌧cut)+
Z

⌧cut

d⌧
d�
d⌧
+��sub(⌧cut) . (10)

Here the term ��sub(⌧cut) = �(⌧cut)��sub(⌧cut) parametrizes the residual power corrections. It
is neglected in slicing methods, giving rise to an intrinsic error of these methods. If the global
subtraction term �sub(⌧cut) cancels only the leading soft and collinear singularities in �(⌧cut) in
eq. (9), then the residual power corrections in the presence of cuts on the decay leptons scale as
p
⌧cut. This implies enhanced corrections of the order qT/Q for the qT subtraction, as will be

explained below, or of the order of
p
T0/Q for the N-jettiness subtraction, as detailed in [31] with

a power counting argument.
The phase space slicing codes under consideration employ di↵erent strategies for dealing with

power corrections. MATRIX performs an extrapolation of rcut = qT/MV ! 0 for the total rate of the
process computed with qT -subtraction by evaluating the cross section at fixed values in the interval
rcut 2 [0.15,1]% in steps of 0.01%. It is then recommended to correct the kinematic distributions
by rescaling uniformly with the ratio �extrapolated

NNLO /�rcut
NNLO. MCFM has improved the ⌧cut dependence

by implementing the leading power corrections of [32, 33] (see also [28]), which are derived for
the production of stable gauge bosons V and scale as ⌧cut, cf. eq. (9). In addition, MCFM computes
the cross section for an array of di↵erent ⌧cut values and performs an automated fitting of the ⌧cut
dependence at NNLO with the following ansatz

�(⌧cut)NNLO = �0+ c1 ⌧cut ln3(⌧cut/MV)+ c2 ⌧cut ln2(⌧cut/MV)+ c3 ⌧cut , (11)

where ci are the fit parameters and the result is then extrapolated to ⌧cut ! 0. Note, that the
functional form in eq. (11) does not capture well the scaling of the leading power corrections
proportional to

p
⌧cut in the case of gauge boson decays [31].

15
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where the +-distributions are the well-known leading threshold logarithms and the terms propor-
tional to ⌧p�1 with p > 0 are integrable and denote power corrections in the soft and collinear limit.
From the analytical integration one obtains for �(⌧cut) schematically
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The crucial point to stress here is the scaling behavior of the power corrections ⌧p
cut, i.e. the value

of the exponent p. For the production of a stable gauge boson V , p takes positive integer values,
while the subsequent decay with cuts on the leptonic final state changes the scaling of the power
corrections [31], such that p rises in steps of half-integers, i.e., p = 1/2,1,3/2 and so on. This will
be discussed in more detail below.

The scaling of the power corrections has consequences for the particular subtraction scheme,
which is then implemented via a global subtraction term �sub(⌧cut) as

� = �sub(⌧cut)+
Z

⌧cut

d⌧
d�
d⌧
+��sub(⌧cut) . (10)

Here the term ��sub(⌧cut) = �(⌧cut)��sub(⌧cut) parametrizes the residual power corrections. It
is neglected in slicing methods, giving rise to an intrinsic error of these methods. If the global
subtraction term �sub(⌧cut) cancels only the leading soft and collinear singularities in �(⌧cut) in
eq. (9), then the residual power corrections in the presence of cuts on the decay leptons scale as
p
⌧cut. This implies enhanced corrections of the order qT/Q for the qT subtraction, as will be

explained below, or of the order of
p
T0/Q for the N-jettiness subtraction, as detailed in [31] with

a power counting argument.
The phase space slicing codes under consideration employ di↵erent strategies for dealing with

power corrections. MATRIX performs an extrapolation of rcut = qT/MV ! 0 for the total rate of the
process computed with qT -subtraction by evaluating the cross section at fixed values in the interval
rcut 2 [0.15,1]% in steps of 0.01%. It is then recommended to correct the kinematic distributions
by rescaling uniformly with the ratio �extrapolated

NNLO /�rcut
NNLO. MCFM has improved the ⌧cut dependence

by implementing the leading power corrections of [32, 33] (see also [28]), which are derived for
the production of stable gauge bosons V and scale as ⌧cut, cf. eq. (9). In addition, MCFM computes
the cross section for an array of di↵erent ⌧cut values and performs an automated fitting of the ⌧cut
dependence at NNLO with the following ansatz

�(⌧cut)NNLO = �0+ c1 ⌧cut ln3(⌧cut/MV)+ c2 ⌧cut ln2(⌧cut/MV)+ c3 ⌧cut , (11)

where ci are the fit parameters and the result is then extrapolated to ⌧cut ! 0. Note, that the
functional form in eq. (11) does not capture well the scaling of the leading power corrections
proportional to

p
⌧cut in the case of gauge boson decays [31].
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subtraction term �sub(⌧cut) cancels only the leading soft and collinear singularities in �(⌧cut) in
eq. (9), then the residual power corrections in the presence of cuts on the decay leptons scale as
p
⌧cut. This implies enhanced corrections of the order qT/Q for the qT subtraction, as will be

explained below, or of the order of
p
T0/Q for the N-jettiness subtraction, as detailed in [31] with

a power counting argument.
The phase space slicing codes under consideration employ di↵erent strategies for dealing with

power corrections. MATRIX performs an extrapolation of rcut = qT/MV ! 0 for the total rate of the
process computed with qT -subtraction by evaluating the cross section at fixed values in the interval
rcut 2 [0.15,1]% in steps of 0.01%. It is then recommended to correct the kinematic distributions
by rescaling uniformly with the ratio �extrapolated

NNLO /�rcut
NNLO. MCFM has improved the ⌧cut dependence

by implementing the leading power corrections of [32, 33] (see also [28]), which are derived for
the production of stable gauge bosons V and scale as ⌧cut, cf. eq. (9). In addition, MCFM computes
the cross section for an array of di↵erent ⌧cut values and performs an automated fitting of the ⌧cut
dependence at NNLO with the following ansatz
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where ci are the fit parameters and the result is then extrapolated to ⌧cut ! 0. Note, that the
functional form in eq. (11) does not capture well the scaling of the leading power corrections
proportional to

p
⌧cut in the case of gauge boson decays [31].

15



11

the power p takes
positive integer values for the production of a stable 
gauge boson V
half-integers, i.e., p = 1/2, 1, 3/2 for subsequent decay 
with cuts on the leptonic final state 

the global subtraction schemes are implemented via a global 
subtraction term σsub(τcut) as 

where                                                     parametrizes the 
residual power corrections that are neglected in slicing 
methods, resulting in an intrinsic error

If the global subtraction term cancels only the leading soft 
and collinear singularities in σ then the residual power 
corrections in the presence of cuts on the decay leptons are 
enhanced to linear in qT

Power corrections and fiducial cuts

The definitions of ⌧ in eqs. (5) and (6) vanish at Born level and resolve additional radiation in an
infrared-safe manner, so that the phase space integration for the cross section can be written as

� =

Z
d⌧

d�
d⌧
=

Z ⌧cut

d⌧
d�
d⌧
+

Z

⌧cut

d⌧
d�
d⌧
= �(⌧cut)+

Z

⌧cut

d⌧
d�
d⌧
, (7)

where ⌧cut is the cut for the slicing of the phase space. The dependence of d�/d⌧ on ⌧ can be
predicted from the universal factorization of QCD in soft and collinear limits. It has the structure

d�
d⌧
⇠ �(⌧)+

X

i

"
lni ⌧

⌧

#

+

+
X

j
⌧p�1 ln j ⌧+O(⌧p) , (8)

where the +-distributions are the well-known leading threshold logarithms and the terms propor-
tional to ⌧p�1 with p > 0 are integrable and denote power corrections in the soft and collinear limit.
From the analytical integration one obtains for �(⌧cut) schematically

�(⌧cut) ⇠ 1+
X

i
lni+1 ⌧cut+

X

j
⌧p

cut ln j ⌧cut+O(⌧p+1
cut ) . (9)

The crucial point to stress here is the scaling behavior of the power corrections ⌧p
cut, i.e. the value

of the exponent p. For the production of a stable gauge boson V , p takes positive integer values,
while the subsequent decay with cuts on the leptonic final state changes the scaling of the power
corrections [31], such that p rises in steps of half-integers, i.e., p = 1/2,1,3/2 and so on. This will
be discussed in more detail below.

The scaling of the power corrections has consequences for the particular subtraction scheme,
which is then implemented via a global subtraction term �sub(⌧cut) as

� = �sub(⌧cut)+
Z

⌧cut

d⌧
d�
d⌧
+��sub(⌧cut) . (10)

Here the term ��sub(⌧cut) = �(⌧cut)��sub(⌧cut) parametrizes the residual power corrections. It
is neglected in slicing methods, giving rise to an intrinsic error of these methods. If the global
subtraction term �sub(⌧cut) cancels only the leading soft and collinear singularities in �(⌧cut) in
eq. (9), then the residual power corrections in the presence of cuts on the decay leptons scale as
p
⌧cut. This implies enhanced corrections of the order qT/Q for the qT subtraction, as will be

explained below, or of the order of
p
T0/Q for the N-jettiness subtraction, as detailed in [31] with

a power counting argument.
The phase space slicing codes under consideration employ di↵erent strategies for dealing with

power corrections. MATRIX performs an extrapolation of rcut = qT/MV ! 0 for the total rate of the
process computed with qT -subtraction by evaluating the cross section at fixed values in the interval
rcut 2 [0.15,1]% in steps of 0.01%. It is then recommended to correct the kinematic distributions
by rescaling uniformly with the ratio �extrapolated

NNLO /�rcut
NNLO. MCFM has improved the ⌧cut dependence

by implementing the leading power corrections of [32, 33] (see also [28]), which are derived for
the production of stable gauge bosons V and scale as ⌧cut, cf. eq. (9). In addition, MCFM computes
the cross section for an array of di↵erent ⌧cut values and performs an automated fitting of the ⌧cut
dependence at NNLO with the following ansatz

�(⌧cut)NNLO = �0+ c1 ⌧cut ln3(⌧cut/MV)+ c2 ⌧cut ln2(⌧cut/MV)+ c3 ⌧cut , (11)

where ci are the fit parameters and the result is then extrapolated to ⌧cut ! 0. Note, that the
functional form in eq. (11) does not capture well the scaling of the leading power corrections
proportional to

p
⌧cut in the case of gauge boson decays [31].

15

The definitions of ⌧ in eqs. (5) and (6) vanish at Born level and resolve additional radiation in an
infrared-safe manner, so that the phase space integration for the cross section can be written as

� =

Z
d⌧

d�
d⌧
=

Z ⌧cut

d⌧
d�
d⌧
+

Z

⌧cut

d⌧
d�
d⌧
= �(⌧cut)+

Z

⌧cut

d⌧
d�
d⌧
, (7)

where ⌧cut is the cut for the slicing of the phase space. The dependence of d�/d⌧ on ⌧ can be
predicted from the universal factorization of QCD in soft and collinear limits. It has the structure

d�
d⌧
⇠ �(⌧)+

X

i

"
lni ⌧

⌧

#

+

+
X

j
⌧p�1 ln j ⌧+O(⌧p) , (8)

where the +-distributions are the well-known leading threshold logarithms and the terms propor-
tional to ⌧p�1 with p > 0 are integrable and denote power corrections in the soft and collinear limit.
From the analytical integration one obtains for �(⌧cut) schematically

�(⌧cut) ⇠ 1+
X

i
lni+1 ⌧cut+

X

j
⌧p

cut ln j ⌧cut+O(⌧p+1
cut ) . (9)

The crucial point to stress here is the scaling behavior of the power corrections ⌧p
cut, i.e. the value

of the exponent p. For the production of a stable gauge boson V , p takes positive integer values,
while the subsequent decay with cuts on the leptonic final state changes the scaling of the power
corrections [31], such that p rises in steps of half-integers, i.e., p = 1/2,1,3/2 and so on. This will
be discussed in more detail below.

The scaling of the power corrections has consequences for the particular subtraction scheme,
which is then implemented via a global subtraction term �sub(⌧cut) as

� = �sub(⌧cut)+
Z

⌧cut

d⌧
d�
d⌧
+��sub(⌧cut) . (10)

Here the term ��sub(⌧cut) = �(⌧cut)��sub(⌧cut) parametrizes the residual power corrections. It
is neglected in slicing methods, giving rise to an intrinsic error of these methods. If the global
subtraction term �sub(⌧cut) cancels only the leading soft and collinear singularities in �(⌧cut) in
eq. (9), then the residual power corrections in the presence of cuts on the decay leptons scale as
p
⌧cut. This implies enhanced corrections of the order qT/Q for the qT subtraction, as will be

explained below, or of the order of
p
T0/Q for the N-jettiness subtraction, as detailed in [31] with

a power counting argument.
The phase space slicing codes under consideration employ di↵erent strategies for dealing with

power corrections. MATRIX performs an extrapolation of rcut = qT/MV ! 0 for the total rate of the
process computed with qT -subtraction by evaluating the cross section at fixed values in the interval
rcut 2 [0.15,1]% in steps of 0.01%. It is then recommended to correct the kinematic distributions
by rescaling uniformly with the ratio �extrapolated

NNLO /�rcut
NNLO. MCFM has improved the ⌧cut dependence

by implementing the leading power corrections of [32, 33] (see also [28]), which are derived for
the production of stable gauge bosons V and scale as ⌧cut, cf. eq. (9). In addition, MCFM computes
the cross section for an array of di↵erent ⌧cut values and performs an automated fitting of the ⌧cut
dependence at NNLO with the following ansatz

�(⌧cut)NNLO = �0+ c1 ⌧cut ln3(⌧cut/MV)+ c2 ⌧cut ln2(⌧cut/MV)+ c3 ⌧cut , (11)

where ci are the fit parameters and the result is then extrapolated to ⌧cut ! 0. Note, that the
functional form in eq. (11) does not capture well the scaling of the leading power corrections
proportional to

p
⌧cut in the case of gauge boson decays [31].

15



12

the lepton phase space is (q = p1+p2)

Lepton phase space and fiducial cuts

B. Fiducial cuts

For the discussion of the fiducial cuts on the decay leptons, we follow the presentation in
[31, 34]. First, we need to further specify the leptonic final state L in eq. (3), which reads

Z/�⇤ ! L(q) = l1(p1)+ l2(p2) , W±! L(q) = l±(p1)+ ⌫(p2) , (12)

and p1,2 are the lepton momenta, q = p1 + p2. In the presence of hadronic final states X(ki) from
additional real emission radiation in eq. (3), using q = pa + pb �

P
i ki, the gauge boson momen-

tum can be expressed through Q, Y and a non-vanishing transverse momentum qT , such that in
components

qµ = (mT cosh(Y),qT ,0,mT sinh(Y)) ,
pµ1 = pT1 (cosh(Y +�y),cos�,sin�,sinh(Y +�y)) ,
pµ2 = qµ� pµ1 , (13)

where mT =
q

Q2+q2
T and the azimuthal angle � in the transverse plane is given by ~pT1 · ~qT =

pT1 qT cos�. Momentum conservation yields for the transverse momenta and rapidities of the
leptons

pT1 =
Q2/2

mT cosh(�y)�qT cos�
,

pT2 =

q
(pT1)2

�2pT1qT cos�+q2
T , (14)

and

⌘1 = Y +�y ,

⌘2 = Y +
1
2

ln
 
mT � pT1 exp(+�y)
mT � pT1 exp(��y)

!
. (15)

The leptonic final state phase space �L (neglecting lepton masses) reads in terms of the vari-
ables � and �y in eq. (13),

�L(qT ) =

0
BBBBBB@

Z 2Y

i=1

d4 pi

(2⇡)3 �
+(p2

i )

1
CCCCCCA (2⇡)4 �(4)(q� p1� p2) =

1
4⇡2

Z ⇡
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d�
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�1

d�y
p2

T1
Q2 , (16)

and pT1 implicitly depends on � and �y through eq. (14). The fiducial cuts on the decay leptons
applied to the data discussed in Sec. II modify eq. (16) by constraining the integration range.
With the typical cuts on the transverse momenta and rapidities of the leptons, pT1,2 � pmin

T and
⌘min

1,2  ⌘1,2  ⌘max
1,2 , the phase space �L becomes

�L(qT ) =
1

4⇡2

Z ⇡

0
d�

Z
1

�1

d�y
p2

T1
Q2

0
BBBBBB@

2Y

i=1
✓(pTi� pmin

T )✓(⌘i�⌘
min
i )✓(⌘max

i �⌘i)

1
CCCCCCA . (17)

It has been pointed out in [31] that the presence of cuts on the leptons’ transverse momenta
breaks azimuthal symmetry and leads to linear power corrections in qT . The expansion of eqs. (14)
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FIG. 15: The di↵erence between the Born and real emission phase spaces �L(0)��L(qT ) of the decay
leptons relative to the Born one at fiducial cuts applied to ATLAS data set [6] for Z/�⇤-boson production
(Q = MZ) for di↵erent values of the gauge boson pseudo-rapidity ⌘ll. For the lepton momenta pl

T � 20 GeV
are required. Left: Cuts selecting central pseudo-rapidities |⌘li |  2.5 for i = 1,2. Right: Cuts selecting one
lepton at central pseudo-rapidity |⌘l1 |  2.5 and the other at forward pseudo-rapidity, 2.5  |⌘l2 |  4.9. The
vertical dashed line indicates the minimum value rmin

cut = 0.15% used in MATRIX as a slicing cut.

which can be approximated for small Y (and using |⌘1| = |Y +�y|  ⌘max)

qT

Q
&

q⇤T
Q
=

|Y |
sinh(⌘max)

+O(Y) . (25)

This defines a lower bound on qT for linear power corrections to appear as a result of broken
azimuthal symmetry due to the pseudo-rapidity cuts. For values qT < q⇤T azimuthal symmetry
is restored and only quadratic power corrections arise. As eqs. (23)-(25) indicate, the transition
between these two regions of qT is sharp up to corrections.

The appearance of linear power corrections in the phase space �L can be illustrated by con-
sidering the deviations |1��L(qT )/�L(0)| from the Born level leading power results for qT = 0.
In Fig. 15 we show them for the fiducial cuts applied to the ATLAS data in case of Z/�⇤-boson
production. On the left in Fig. 15, the leptons are selected at central pseudo-rapidities |⌘li |  2.5
for i = 1,2 and we observe the presence of linear power corrections in qT for central gauge boson
pseudo-rapidities ⌘ll . 1 due to the pT constraint in eq. (20). For rcut = qT/Q= 0.15%, which is the
default value for rcut used in MATRIX as a slicing cut and indicated by the vertical dashed line in
Fig. 15, their size amounts to O(0.5o/oo). In contrast, for larger ⌘ll the pseudo-rapidity constraints
dominate the phase space �L and azimuthal symmetry is restored, resulting in quadratic power
corrections in qT for small enough qT , see eqs. (23)-(25). In Fig. 15 on the left this feature is
illustrated for ⌘ll = 1.2 and 1.8, and the corrections to �L for rcut = 0.15% are smaller by more
than two orders of magnitude. It is interesting to compare these findings with the ⌘ll dependence
of the di↵erences at NLO of DYNNLO from codes using local subtraction in Fig. 2 and with the
deviations at NNLO of DYNNLO, MATRIX (with rcut = 0.15%) and MCFM from FEWZ in Figs. 5, 6
and 7 for central Z/�⇤-boson production. For ⌘ll . 1 all slicing codes undershoot FEWZ, while they
tend to agree well for ⌘ll & 1.5. The transition around ⌘ll & 1.2 when the linear power corrections
in qT in �L vanish, is most pronounced in the case of MCFM in Fig. 7.
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the lepton phase space is (q = p1+p2)

after employing typical fiducial cuts, it reads as

the θ-functions break azimuthal symmetry in some parts of 
the phase space due to rapidity cuts — leading to linear 
power corrections —, whose boundary is given by qT* 
obtained as

with Y being the pseudo rapidity of the gauge boson

Lepton phase space and fiducial cuts

B. Fiducial cuts

For the discussion of the fiducial cuts on the decay leptons, we follow the presentation in
[31, 34]. First, we need to further specify the leptonic final state L in eq. (3), which reads

Z/�⇤ ! L(q) = l1(p1)+ l2(p2) , W±! L(q) = l±(p1)+ ⌫(p2) , (12)

and p1,2 are the lepton momenta, q = p1 + p2. In the presence of hadronic final states X(ki) from
additional real emission radiation in eq. (3), using q = pa + pb �

P
i ki, the gauge boson momen-

tum can be expressed through Q, Y and a non-vanishing transverse momentum qT , such that in
components

qµ = (mT cosh(Y),qT ,0,mT sinh(Y)) ,
pµ1 = pT1 (cosh(Y +�y),cos�,sin�,sinh(Y +�y)) ,
pµ2 = qµ� pµ1 , (13)

where mT =
q

Q2+q2
T and the azimuthal angle � in the transverse plane is given by ~pT1 · ~qT =

pT1 qT cos�. Momentum conservation yields for the transverse momenta and rapidities of the
leptons

pT1 =
Q2/2

mT cosh(�y)�qT cos�
,

pT2 =
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and
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The leptonic final state phase space �L (neglecting lepton masses) reads in terms of the vari-
ables � and �y in eq. (13),
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and pT1 implicitly depends on � and �y through eq. (14). The fiducial cuts on the decay leptons
applied to the data discussed in Sec. II modify eq. (16) by constraining the integration range.
With the typical cuts on the transverse momenta and rapidities of the leptons, pT1,2 � pmin
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It has been pointed out in [31] that the presence of cuts on the leptons’ transverse momenta
breaks azimuthal symmetry and leads to linear power corrections in qT . The expansion of eqs. (14)
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FIG. 15: The di↵erence between the Born and real emission phase spaces �L(0)��L(qT ) of the decay
leptons relative to the Born one at fiducial cuts applied to ATLAS data set [6] for Z/�⇤-boson production
(Q = MZ) for di↵erent values of the gauge boson pseudo-rapidity ⌘ll. For the lepton momenta pl

T � 20 GeV
are required. Left: Cuts selecting central pseudo-rapidities |⌘li |  2.5 for i = 1,2. Right: Cuts selecting one
lepton at central pseudo-rapidity |⌘l1 |  2.5 and the other at forward pseudo-rapidity, 2.5  |⌘l2 |  4.9. The
vertical dashed line indicates the minimum value rmin

cut = 0.15% used in MATRIX as a slicing cut.

which can be approximated for small Y (and using |⌘1| = |Y +�y|  ⌘max)
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sinh(⌘max)
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This defines a lower bound on qT for linear power corrections to appear as a result of broken
azimuthal symmetry due to the pseudo-rapidity cuts. For values qT < q⇤T azimuthal symmetry
is restored and only quadratic power corrections arise. As eqs. (23)-(25) indicate, the transition
between these two regions of qT is sharp up to corrections.

The appearance of linear power corrections in the phase space �L can be illustrated by con-
sidering the deviations |1��L(qT )/�L(0)| from the Born level leading power results for qT = 0.
In Fig. 15 we show them for the fiducial cuts applied to the ATLAS data in case of Z/�⇤-boson
production. On the left in Fig. 15, the leptons are selected at central pseudo-rapidities |⌘li |  2.5
for i = 1,2 and we observe the presence of linear power corrections in qT for central gauge boson
pseudo-rapidities ⌘ll . 1 due to the pT constraint in eq. (20). For rcut = qT/Q= 0.15%, which is the
default value for rcut used in MATRIX as a slicing cut and indicated by the vertical dashed line in
Fig. 15, their size amounts to O(0.5o/oo). In contrast, for larger ⌘ll the pseudo-rapidity constraints
dominate the phase space �L and azimuthal symmetry is restored, resulting in quadratic power
corrections in qT for small enough qT , see eqs. (23)-(25). In Fig. 15 on the left this feature is
illustrated for ⌘ll = 1.2 and 1.8, and the corrections to �L for rcut = 0.15% are smaller by more
than two orders of magnitude. It is interesting to compare these findings with the ⌘ll dependence
of the di↵erences at NLO of DYNNLO from codes using local subtraction in Fig. 2 and with the
deviations at NNLO of DYNNLO, MATRIX (with rcut = 0.15%) and MCFM from FEWZ in Figs. 5, 6
and 7 for central Z/�⇤-boson production. For ⌘ll . 1 all slicing codes undershoot FEWZ, while they
tend to agree well for ⌘ll & 1.5. The transition around ⌘ll & 1.2 when the linear power corrections
in qT in �L vanish, is most pronounced in the case of MCFM in Fig. 7.
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after employing typical fiducial cuts, it reads as
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For the discussion of the fiducial cuts on the decay leptons, we follow the presentation in
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tum can be expressed through Q, Y and a non-vanishing transverse momentum qT , such that in
components
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and pT1 implicitly depends on � and �y through eq. (14). The fiducial cuts on the decay leptons
applied to the data discussed in Sec. II modify eq. (16) by constraining the integration range.
With the typical cuts on the transverse momenta and rapidities of the leptons, pT1,2 � pmin

T and
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It has been pointed out in [31] that the presence of cuts on the leptons’ transverse momenta
breaks azimuthal symmetry and leads to linear power corrections in qT . The expansion of eqs. (14)
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FIG. 15: The di↵erence between the Born and real emission phase spaces �L(0)��L(qT ) of the decay
leptons relative to the Born one at fiducial cuts applied to ATLAS data set [6] for Z/�⇤-boson production
(Q = MZ) for di↵erent values of the gauge boson pseudo-rapidity ⌘ll. For the lepton momenta pl

T � 20 GeV
are required. Left: Cuts selecting central pseudo-rapidities |⌘li |  2.5 for i = 1,2. Right: Cuts selecting one
lepton at central pseudo-rapidity |⌘l1 |  2.5 and the other at forward pseudo-rapidity, 2.5  |⌘l2 |  4.9. The
vertical dashed line indicates the minimum value rmin

cut = 0.15% used in MATRIX as a slicing cut.

which can be approximated for small Y (and using |⌘1| = |Y +�y|  ⌘max)

qT

Q
&

q⇤T
Q
=

|Y |
sinh(⌘max)

+O(Y) . (25)

This defines a lower bound on qT for linear power corrections to appear as a result of broken
azimuthal symmetry due to the pseudo-rapidity cuts. For values qT < q⇤T azimuthal symmetry
is restored and only quadratic power corrections arise. As eqs. (23)-(25) indicate, the transition
between these two regions of qT is sharp up to corrections.

The appearance of linear power corrections in the phase space �L can be illustrated by con-
sidering the deviations |1��L(qT )/�L(0)| from the Born level leading power results for qT = 0.
In Fig. 15 we show them for the fiducial cuts applied to the ATLAS data in case of Z/�⇤-boson
production. On the left in Fig. 15, the leptons are selected at central pseudo-rapidities |⌘li |  2.5
for i = 1,2 and we observe the presence of linear power corrections in qT for central gauge boson
pseudo-rapidities ⌘ll . 1 due to the pT constraint in eq. (20). For rcut = qT/Q= 0.15%, which is the
default value for rcut used in MATRIX as a slicing cut and indicated by the vertical dashed line in
Fig. 15, their size amounts to O(0.5o/oo). In contrast, for larger ⌘ll the pseudo-rapidity constraints
dominate the phase space �L and azimuthal symmetry is restored, resulting in quadratic power
corrections in qT for small enough qT , see eqs. (23)-(25). In Fig. 15 on the left this feature is
illustrated for ⌘ll = 1.2 and 1.8, and the corrections to �L for rcut = 0.15% are smaller by more
than two orders of magnitude. It is interesting to compare these findings with the ⌘ll dependence
of the di↵erences at NLO of DYNNLO from codes using local subtraction in Fig. 2 and with the
deviations at NNLO of DYNNLO, MATRIX (with rcut = 0.15%) and MCFM from FEWZ in Figs. 5, 6
and 7 for central Z/�⇤-boson production. For ⌘ll . 1 all slicing codes undershoot FEWZ, while they
tend to agree well for ⌘ll & 1.5. The transition around ⌘ll & 1.2 when the linear power corrections
in qT in �L vanish, is most pronounced in the case of MCFM in Fig. 7.
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lepton at central pseudo-rapidity |⌘l1 |  2.5 and the other at forward pseudo-rapidity, 2.5  |⌘l2 |  4.9. The
vertical dashed line indicates the minimum value rmin

cut = 0.15% used in MATRIX as a slicing cut.
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azimuthal symmetry due to the pseudo-rapidity cuts. For values qT < q⇤T azimuthal symmetry
is restored and only quadratic power corrections arise. As eqs. (23)-(25) indicate, the transition
between these two regions of qT is sharp up to corrections.

The appearance of linear power corrections in the phase space �L can be illustrated by con-
sidering the deviations |1��L(qT )/�L(0)| from the Born level leading power results for qT = 0.
In Fig. 15 we show them for the fiducial cuts applied to the ATLAS data in case of Z/�⇤-boson
production. On the left in Fig. 15, the leptons are selected at central pseudo-rapidities |⌘li |  2.5
for i = 1,2 and we observe the presence of linear power corrections in qT for central gauge boson
pseudo-rapidities ⌘ll . 1 due to the pT constraint in eq. (20). For rcut = qT/Q= 0.15%, which is the
default value for rcut used in MATRIX as a slicing cut and indicated by the vertical dashed line in
Fig. 15, their size amounts to O(0.5o/oo). In contrast, for larger ⌘ll the pseudo-rapidity constraints
dominate the phase space �L and azimuthal symmetry is restored, resulting in quadratic power
corrections in qT for small enough qT , see eqs. (23)-(25). In Fig. 15 on the left this feature is
illustrated for ⌘ll = 1.2 and 1.8, and the corrections to �L for rcut = 0.15% are smaller by more
than two orders of magnitude. It is interesting to compare these findings with the ⌘ll dependence
of the di↵erences at NLO of DYNNLO from codes using local subtraction in Fig. 2 and with the
deviations at NNLO of DYNNLO, MATRIX (with rcut = 0.15%) and MCFM from FEWZ in Figs. 5, 6
and 7 for central Z/�⇤-boson production. For ⌘ll . 1 all slicing codes undershoot FEWZ, while they
tend to agree well for ⌘ll & 1.5. The transition around ⌘ll & 1.2 when the linear power corrections
in qT in �L vanish, is most pronounced in the case of MCFM in Fig. 7.

18

difference between the Born and real emission phase spaces ΦL(0) − ΦL(qT) of the decay leptons 
relative to the Born one at fiducial cuts applied to ATLAS data set for Z/γ∗-boson production (Q = 
MZ) for different values of the gauge boson pseudo-rapidity ηll, pl

T ≥ 20 GeV. Left: cuts selecting 
central pseudo-rapidities. Right: Cuts selecting one lepton at central pseudo-rapidity and the other 
at forward pseudo-rapidity. The vertical dashed line indicates the minimum value rcut = 0.15% used in 
MATRIX as a slicing cut 
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Recall: MATRIX vs FEWZ
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FIG. 5: The pulls for the ATLAS data measured in inclusive pp!W±+X! l±⌫+X and pp! Z/�⇤+X!
l+l� +X production at

p
s = 7 TeV [6] with the statistical (inner bar) and the total uncertainties, including

the systematic ones. The fiducial cuts on the decay leptons in the final state are indicated in the figure. The
ABMP16 central predictions at NNLO are obtained with FEWZ and the deviations of the predictions from
DYNNLO are shown (dashed) for comparison.
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FIG. 6: Same as Fig. 5 using predictions by the MATRIX code with di↵erent values for the qT -slicing cut:
rmin

cut = 0.15% (dashed) and rmin
cut = 0.05% (dashed-dotted).

7

NNLO QCD cross sections for inclusive 
pp→W±+X→l±ν+X and pp→Z/γ*+X→l+l—+X as function of pseudo-rapidity, 

fiducial cuts as before and indicated in the plots
rcut = 0.15% (dashed) and rcut = 0.05% (dashed-dotted) 
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Conclusions

✓  at NLO MATRIX, MCFM and FEWZ are in agreement

✓ at NNLO accuracy we found differences among the predictions 
comparable in size to the NNLO correction itself — see Appendix 

✓ fiducial cuts on the transverse momenta and pseudo-rapidities of the 
decay leptons lead to linear power corrections in the slicing 
parameter 

✓ deviations share certain patterns across the range of pseudo-rapidities 
in the considered distributions, which have been correlated with the 
appearance of linear power corrections in the lepton decay phase 
space ΦL as a function of qT 

✓ the continuous increase in the precision of the experimental 
measurements, the theory predictions are pressed to provide cross 
sections at NNLO (or beyond) where the systematic uncertainties 
due to choices of particular schemes or algorithms for the 
computation can be safely neglected in comparison to the 
experimental uncertainties 
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Consistency of parameters: agreement at O(10−5) at LO

At NLO all but DYNNLO employ local subtraction

Validation at LO and NLO
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FIG. 1: The NLO QCD cross sections for inclusive pp!W±+X! l±⌫+X as function of pseudo-rapidity
⌘l, computed with DYNNLO, MATRIX and MCFM relative to FEWZ and using the ABMP16 PDFs. Cuts of
pl,⌫

T � 25 GeV and MT � 40 GeV for the transverse momenta and mass are applied as in the ATLAS data
selection [6]. The error bars indicate the accuracy of the numerical integration, shown by the horizontal
dashed lines for the FEWZ result. The MATRIX result is plotted in the center of each ⌘l-bin, while DYNNLO
and MCFM results are shifted slightly to the left and the right.
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FIG. 2: Same as Fig. 1 for the NLO QCD cross sections for pp! Z/�⇤ + X ! l+l� + X production at
p

s = 7 TeV as function of the pseudo-rapidity ⌘ll. Cuts of pT1,2 � 25 GeV, 66 � Mll � 116 GeV and
|⌘li |  2.5, i = 1,2 for the lepton pseudo-rapidities are applied.

subtraction schemes except for DYNNLO, which uses qT -subtraction also at NLO 7. FEWZ applies
sector decomposition while MATRIX and MCFM all use by default the dipole subtraction [26].

In Fig. 1 we plot the results for the W±-production cross sections at
p

s = 7 TeV at NLO
corresponding to the kinematics of the ATLAS data set [6] and we find agreement at the level of
O(1o/oo) between FEWZ, MATRIX and MCFM in the entire ⌘l range, while for DYNNLO we find the
values to be systematically enhanced by O(5o/oo) for both, W+- and W�-production. In Figs. 2 and

7 Dipole subtraction is used in DYNNLO only in the computation of the vector-boson+jet contribution.

4

NLO QCD cross sections for inclusive pp→W±+X→l±ν+X as function of pseudo-
rapidity, plT,pνT ≥ 25 GeV and MT ≥ 40 GeV
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At NLO all but DYNNLO employ local subtraction

Validation at LO and NLO
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FIG. 1: The NLO QCD cross sections for inclusive pp!W±+X! l±⌫+X as function of pseudo-rapidity
⌘l, computed with DYNNLO, MATRIX and MCFM relative to FEWZ and using the ABMP16 PDFs. Cuts of
pl,⌫

T � 25 GeV and MT � 40 GeV for the transverse momenta and mass are applied as in the ATLAS data
selection [6]. The error bars indicate the accuracy of the numerical integration, shown by the horizontal
dashed lines for the FEWZ result. The MATRIX result is plotted in the center of each ⌘l-bin, while DYNNLO
and MCFM results are shifted slightly to the left and the right.
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FIG. 2: Same as Fig. 1 for the NLO QCD cross sections for pp! Z/�⇤ + X ! l+l� + X production at
p

s = 7 TeV as function of the pseudo-rapidity ⌘ll. Cuts of pT1,2 � 25 GeV, 66 � Mll � 116 GeV and
|⌘li |  2.5, i = 1,2 for the lepton pseudo-rapidities are applied.

subtraction schemes except for DYNNLO, which uses qT -subtraction also at NLO 7. FEWZ applies
sector decomposition while MATRIX and MCFM all use by default the dipole subtraction [26].

In Fig. 1 we plot the results for the W±-production cross sections at
p

s = 7 TeV at NLO
corresponding to the kinematics of the ATLAS data set [6] and we find agreement at the level of
O(1o/oo) between FEWZ, MATRIX and MCFM in the entire ⌘l range, while for DYNNLO we find the
values to be systematically enhanced by O(5o/oo) for both, W+- and W�-production. In Figs. 2 and

7 Dipole subtraction is used in DYNNLO only in the computation of the vector-boson+jet contribution.

4

As previous for pp→Z/γ*+X→l+l—+X, piT ≥ 25 GeV,  
116 ≥ Mll/GeV ≥ 66, |ηli| ≤ 2.5, i = 1, 2 
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At NLO all but DYNNLO employ local subtraction

Validation at LO and NLO
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FIG. 3: Same as Fig. 2 with one lepton at forward pseudo-rapidities and cuts of |⌘l1 |  2.5 and 2.5  |⌘l2 | 

4.9. Predictions by DYNNLO, MATRIX and MCFM relative to FEWZ (left) and zoom on MATRIX and MCFM results
(right).
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FIG. 4: The ratio of the NLO QCD corrections to the electron charge asymmetry distribution Ae in W±-
boson production at

p
s = 1.96 TeV computed with DYNNLO, MATRIX and MCFM to ones by FEWZ. Cuts are

applied as in the DØ data selection [8]: pe,⌫
T � 25 GeV symmetric (left) and pe

T � 35 GeV and p⌫T � 25 GeV
staggered (right).

3 we show the NLO cross sections for Z/�⇤-production at
p

s = 7 TeV in the ATLAS kinematics
with the di↵erent selection cuts on the lepton pseudo-rapidities. In the case of both leptons at
central pseudo-rapidities |⌘li |  2.5 for i = 1,2 in Fig. 2 we find agreement among all codes, except
for a slight systematic o↵-set of the DYNNLO result by O(3o/oo) for ⌘ll . 1.0. In Fig. 3 we display the
case when one lepton is required at central and the other one instead at forward pseudo-rapidity,
|⌘l1 |  2.5  |⌘l2 |  4.9. We observe agreement at the level of O(1� 2o/oo) between FEWZ, MATRIX
and MCFM as shown in Fig. 3 on the right, while the DYNNLO results turn out to be larger by up
to a few per cent in the first ⌘ll bins. Finally, in Fig. 4 we plot the electron charge asymmetry
distribution Ae in W±-boson production at

p
s = 1.96 TeV for two choices of cuts applied in the

selection of the DØ data [8]: on the left we have symmetric cuts, pe,⌫
T � 25 GeV, and on the right

staggered cuts, pe
T � 35 GeV and p⌫T � 25 GeV. We show the ratio of the DYNNLO, MATRIX and

5

As previous but with |ηl1| ≤ 2.5, 2.5 ≤ |ηl2| ≤ 4.9
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Consistency of parameters: agreement at O(10−5) at LO

At NLO all but DYNNLO employ local subtraction

Validation at LO and NLO
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FIG. 3: Same as Fig. 2 with one lepton at forward pseudo-rapidities and cuts of |⌘l1 |  2.5 and 2.5  |⌘l2 | 

4.9. Predictions by DYNNLO, MATRIX and MCFM relative to FEWZ (left) and zoom on MATRIX and MCFM results
(right).
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FIG. 4: The ratio of the NLO QCD corrections to the electron charge asymmetry distribution Ae in W±-
boson production at

p
s = 1.96 TeV computed with DYNNLO, MATRIX and MCFM to ones by FEWZ. Cuts are

applied as in the DØ data selection [8]: pe,⌫
T � 25 GeV symmetric (left) and pe

T � 35 GeV and p⌫T � 25 GeV
staggered (right).

3 we show the NLO cross sections for Z/�⇤-production at
p

s = 7 TeV in the ATLAS kinematics
with the di↵erent selection cuts on the lepton pseudo-rapidities. In the case of both leptons at
central pseudo-rapidities |⌘li |  2.5 for i = 1,2 in Fig. 2 we find agreement among all codes, except
for a slight systematic o↵-set of the DYNNLO result by O(3o/oo) for ⌘ll . 1.0. In Fig. 3 we display the
case when one lepton is required at central and the other one instead at forward pseudo-rapidity,
|⌘l1 |  2.5  |⌘l2 |  4.9. We observe agreement at the level of O(1� 2o/oo) between FEWZ, MATRIX
and MCFM as shown in Fig. 3 on the right, while the DYNNLO results turn out to be larger by up
to a few per cent in the first ⌘ll bins. Finally, in Fig. 4 we plot the electron charge asymmetry
distribution Ae in W±-boson production at

p
s = 1.96 TeV for two choices of cuts applied in the

selection of the DØ data [8]: on the left we have symmetric cuts, pe,⌫
T � 25 GeV, and on the right

staggered cuts, pe
T � 35 GeV and p⌫T � 25 GeV. We show the ratio of the DYNNLO, MATRIX and

5

electron charge asymmetry distribution Ae in W± boson production 
Left:  symmetric cuts, plT, pνT ≥ 25 GeV

Right: staggered cuts plT ≥ 35 GeV,pνT ≥ 25 GeV
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DYNNLO vs FEWZ
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FIG. 5: The pulls for the ATLAS data measured in inclusive pp!W±+X! l±⌫+X and pp! Z/�⇤+X!
l+l� +X production at

p
s = 7 TeV [6] with the statistical (inner bar) and the total uncertainties, including

the systematic ones. The fiducial cuts on the decay leptons in the final state are indicated in the figure. The
ABMP16 central predictions at NNLO are obtained with FEWZ and the deviations of the predictions from
DYNNLO are shown (dashed) for comparison.
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FIG. 6: Same as Fig. 5 using predictions by the MATRIX code with di↵erent values for the qT -slicing cut:
rmin

cut = 0.15% (dashed) and rmin
cut = 0.05% (dashed-dotted).

7

NNLO QCD cross sections for inclusive 
pp→W±+X→l±ν+X and pp→Z/γ*+X→l+l—+X as function of pseudo-rapidity, 

fiducial cuts as before and indicated in the plots
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MATRIX vs FEWZ
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FIG. 5: The pulls for the ATLAS data measured in inclusive pp!W±+X! l±⌫+X and pp! Z/�⇤+X!
l+l� +X production at

p
s = 7 TeV [6] with the statistical (inner bar) and the total uncertainties, including

the systematic ones. The fiducial cuts on the decay leptons in the final state are indicated in the figure. The
ABMP16 central predictions at NNLO are obtained with FEWZ and the deviations of the predictions from
DYNNLO are shown (dashed) for comparison.
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FIG. 6: Same as Fig. 5 using predictions by the MATRIX code with di↵erent values for the qT -slicing cut:
rmin

cut = 0.15% (dashed) and rmin
cut = 0.05% (dashed-dotted).

7

As previous with different values for the qT-slicing cut: 
rcut = 0.15% (dashed) and rcut = 0.05% (dashed-dotted) 
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MCFM vs FEWZ
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FIG. 7: Same as Fig. 5 using predictions by the MCFM code and with di↵erent values for the jettiness slicing
parameter: ⌧cut = 6 ·10�3 (dashed), ⌧cut = 1 ·10�3 (dotted), and ⌧cut = 4 ·10�4 (dashed-dotted).

of O(5%) in the first bin. In order to deal with the residual dependence on the slicing cut in qT
MATRIX extrapolates the total rates for rmin

cut ! 0 and suggests a uniform rescaling of each bin by
the ratio �extrapolated

NNLO /�rcut
NNLO, see also Sec. III. In Fig. 6 this rescaling has not been applied. If

done, it would lead to upward shifts of the central values obtained with MATRIX by 5± 2 o/oo for
W+- and by 4± 2 o/oo for W�-production. Central Z-boson predictions would move upwards by
2±1 o/oo and the ones for forward Z-bosons by 7±3 o/oo. The uncertainty in those rescaling factors
comes from the extrapolation uncertainty in �extrapolated

NNLO . Such shifts decrease, but do not eradicate
the di↵erences. The MATRIX results with the smaller value rmin

cut = 0.05% lead to better agreement
with the FEWZ results, i.e., there are systematic upward shifts in Fig. 6. In detail, these amount to
a few per mill for ⌘ll  1.0 for Z/�⇤-production at central rapidities and up to a few per cent for
forward Z/�⇤-production in the bins with ⌘ll . 2.0. The computational demands for these MATRIX
runs were huge. 8 The suggested rescaling factor �extrapolated

NNLO /�rcut
NNLO turns out to be unity within

the numerical accuracy of our computation for central Z/�⇤-production. Predictions for forward
Z-bosons would be shifted upwards uniformly by 3±2 o/oo and the observed di↵erences, especially
in the first ⌘ll bins, would still persist.

Finally, in Fig. 7 we repeat the benchmark study with NNLO predictions obtained with the
MCFM code, in which case the numerical integration accuracy is typically O(1o/oo) and negligible
in the plots. We do find substantial deviations of the MCFM results at NNLO, being below the
FEWZ ones for all distributions considered. Di↵erences amount to O(3%) for the ⌘l-distribution
in W+-production and up to O(2%) for W�-production, respectively. For central Z/�⇤-production
the ⌘ll-distribution is also O(2%) below the FEWZ results for ⌘ll  1.5 and up to O(2� 3%) for

8 The required CPU times for the MATRIX runs with rmin
cut = 0.05% were roughly 200.000 hrs for central and approxi-

mately 350.000 hrs for forward Z-boson production.

8

As previous with different values for the jettiness slicing cut: 
τcut = 6 · 10−3 (dashed), τcut = 10−3 (dotted), τcut = 4 · 10−4 (dashed-dotted)
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FIG. 9: The pulls for the ATLAS data for pp! Z/�⇤ + X ! l+l� + X production at forward rapidities
measured at

p
s = 7 TeV [6], normalized to the ABMP16 predictions at NNLO obtained with FEWZ (version

3.1) compared to predictions by the DYNNLO (left) and the FEWZ codes (right). Shown are the LO (dotted),
NLO (dashed) and NNLO (solid) predictions for each code.

among the predictions signal that the numerical precision of the studied computer programs does
not match the formal accuracy of predictions at NNLO.

In Fig. 9 we focus on the ⌘ll-distribution for the forward Z/�⇤-production obtained by AT-
LAS [6]. The particular fiducial cuts on the decay leptons for these data lead to sizeable QCD
corrections at higher orders, which we illustrate in Fig. 9, where we display at LO, NLO and
NNLO accuracies obtained with DYNNLO (left) and with FEWZ (right). The same comparison is
performed in Fig. 10 for the results of the MATRIX and the MCFM codes, where we display �NNLO
with the smallest slicing cuts, rmin

cut = 0.05% and ⌧cut = 4 ·10�4. As already remarked above, we use
ABMP16 PDFs at NNLO in all cases, independent of the perturbative order. Figs. 9 and 10 clearly
illustrate the significant corrections up to O(50%) in first bins, when increasing the perturbative
order from LO to NLO, while the change from NLO to the NNLO QCD predictions still amounts
to corrections of O(5� 10%) in some ⌘ll bins. The LO results in Figs. 9 and 10 are all in per-
fect agreement and the deviations in the NLO predictions by DYNNLO have already been discussed
above.

The observed pattern of the higher order corrections for the predictions with FEWZ in Fig. 9
(right) and with MATRIX in Fig. 10 (left) is very similar. The overall o↵set of the pulls for the
MATRIX results with rmin

cut = 0.05% compared to the FEWZ ones is small in the entire ⌘ll range
except for the first ⌘ll bins and originates from the di↵erent NNLO cross sections as illustrated in
Fig. 6. In contrast, the cross sections �LO, �NLO and �NNLO from DYNNLO in Fig. 9 (left) and from
MCFM in Fig. 10 (right) show a di↵erent trend. The pulls for the ATLAS data follow rather closely
the respective NLO predictions across the entire range in rapidities. The NNLO predictions from
those codes do undershoot the data by several per cent, which causes the significant deviations
displayed in Figs. 5 and 7.

10

LO, NLO and NNLO QCD cross sections normalized to FEWZ at NNLO
 for inclusive pp→Z/γ*+X→l+l—+X as function of pseudo-rapidity of the 

lepton pair with staggered cuts indicated in the plots
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FIG. 10: Same as Fig. 9 using predictions by the MATRIX (left) and the MCFM codes (right).

Next we continue the benchmark studies with DØ data on the electron charge asymmetry distri-
bution Ae, which has been obtained as a function of the electron pseudo-rapidity from W±-boson
production at

p
s = 1.96 TeV at the Tevatron [8]. This observable is also subject to larger higher

order corrections so that we illustrate again the size of the LO, NLO and NNLO predictions ob-
tained, as before, in all cases with the NNLO ABMP16 PDFs and ↵(n f=5)

s (MZ) = 0.1147 and we
plot the di↵erence to the NNLO predictions computed with the FEWZ code. The DØ data had al-
ready been included in the fit of the ABMP16 PDFs and a good description of those data in the fit
had been reached.

In Fig. 11 we plot in addition to the DØ data on Ae the LO, NLO and NNLO predictions by the
DYNNLO code (left) and the MATRIX code (right), keeping again a relative numerical integration ac-
curacy of a few units in 10�4 for the respective W±-boson cross sections. The LO and NLO curves
illustrate the sizable higher order corrections and those predictions agree among these codes. With
the given accuracy of the DØ data on Ae, also the NNLO corrections are relevant, but we see both,
the DYNNLO and the MATRIX results (here with rmin

cut = 0.15%) being mostly above the FEWZ num-
bers. The deviations increase with increasing electron pseudo-rapidity ⌘e and become significant
for ⌘e & 1.0, where the size of the di↵erence exceeds the size of the pure NNLO corrections. For
the asymmetry Ae any overall rescaling of cross sections as suggested for the MATRIX code and
described in Sec. III to account for rmin

cut dependence has no e↵ect.
In Fig. 12 we show the same study, now comparing to the results obtained with the MCFM code.

The NNLO MCFM result has been computed with the default ⌧cut value, ⌧cut = 6 · 10�3, and the
numerical integration accuracy of the individual W±-boson cross sections is typically O(1o/oo). In
addition, deviating from the default settings of MCFM, the parameter cutoff has been changed
to 10�6 from 10�9, which is its default value 10. The parameter cutoff provides the minimum
value on any dimensionless variables, for instance, any invariant mass squared si j of any pair

10 Execution of MCFM with the command ./mcfm_omp input.ini -extra%cutoff=1d-6.

11

As previous for MATRIX (left) and MCFM (right)
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FIG. 11: The DØ data on the electron charge asymmetry distribution Ae in W±-boson production at
p

s =
1.96 TeV with the statistical (inner bar) and the total uncertainties, including the systematic ones. Shown
is the di↵erence of Ae to the ABMP16 central predictions at NNLO obtained with FEWZ. The symmetric
pe,⌫

T -cuts of the decay leptons are indicated in the figure. The LO (dotted), NLO (dashed-dotted) and NNLO
(dashed) predictions by the DYNNLO code (left) and by the MATRIX code (right) are displayed for comparison.
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FIG. 12: Same as Fig. 11 using predictions by the MCFM code.

of partons scaled by their energies, such that si j/(EiE j) can never be less than cutoff. Cross
sections �NNLO for W±-boson production in the DØ kinematics computed with cutoff = 10�9
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FIG. 13: Same as Fig. 11, now with staggered cuts pe
T > p⌫T on the decay leptons as indicated in the figure

for the DYNNLO code (left) and the MATRIX code (right).
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FIG. 14: Same as Fig. 13 using predictions by the MCFM code.

showed severe numerical instabilities. For the agreement of the NNLO MCFM results with FEWZ, we
find a similar pattern of increasing deviations with increasing electron pseudo-rapidity ⌘e, which
become significant for ⌘e & 1.0. The two choices of smaller ⌧cut values in MCFM, 1 · 10�3 and
4 ·10�4, lead to the same NNLO predictions for Ae, within the numerical uncertainites.

Finally, Figs. 13 and 14 show the DØ data and the predictions of DYNNLO, MATRIX and MCFM

13

electron charge asymmetry distribution Ae in W± boson production at LO, NLO and 
NNLO normalized to FEWZ at NNLO

Left: symmetric cuts Right: staggered cuts as indicated in the plots
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FIG. 11: The DØ data on the electron charge asymmetry distribution Ae in W±-boson production at
p

s =
1.96 TeV with the statistical (inner bar) and the total uncertainties, including the systematic ones. Shown
is the di↵erence of Ae to the ABMP16 central predictions at NNLO obtained with FEWZ. The symmetric
pe,⌫

T -cuts of the decay leptons are indicated in the figure. The LO (dotted), NLO (dashed-dotted) and NNLO
(dashed) predictions by the DYNNLO code (left) and by the MATRIX code (right) are displayed for comparison.
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FIG. 12: Same as Fig. 11 using predictions by the MCFM code.

of partons scaled by their energies, such that si j/(EiE j) can never be less than cutoff. Cross
sections �NNLO for W±-boson production in the DØ kinematics computed with cutoff = 10�9
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electron charge asymmetry distribution Ae in W± boson production at LO, NLO and 
NNLO normalized to FEWZ at NNLO

Left: symmetric cuts Right: staggered cuts as indicated in the plots
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FIG. 13: Same as Fig. 11, now with staggered cuts pe
T > p⌫T on the decay leptons as indicated in the figure

for the DYNNLO code (left) and the MATRIX code (right).
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FIG. 14: Same as Fig. 13 using predictions by the MCFM code.

showed severe numerical instabilities. For the agreement of the NNLO MCFM results with FEWZ, we
find a similar pattern of increasing deviations with increasing electron pseudo-rapidity ⌘e, which
become significant for ⌘e & 1.0. The two choices of smaller ⌧cut values in MCFM, 1 · 10�3 and
4 ·10�4, lead to the same NNLO predictions for Ae, within the numerical uncertainites.

Finally, Figs. 13 and 14 show the DØ data and the predictions of DYNNLO, MATRIX and MCFM

13
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FIG. 11: The DØ data on the electron charge asymmetry distribution Ae in W±-boson production at
p

s =
1.96 TeV with the statistical (inner bar) and the total uncertainties, including the systematic ones. Shown
is the di↵erence of Ae to the ABMP16 central predictions at NNLO obtained with FEWZ. The symmetric
pe,⌫

T -cuts of the decay leptons are indicated in the figure. The LO (dotted), NLO (dashed-dotted) and NNLO
(dashed) predictions by the DYNNLO code (left) and by the MATRIX code (right) are displayed for comparison.
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FIG. 12: Same as Fig. 11 using predictions by the MCFM code.

of partons scaled by their energies, such that si j/(EiE j) can never be less than cutoff. Cross
sections �NNLO for W±-boson production in the DØ kinematics computed with cutoff = 10�9
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electron charge asymmetry distribution Ae in W± boson production at LO, NLO and 
NNLO normalized to FEWZ at NNLO

Left: symmetric cuts Right: staggered cuts as indicated in the plots
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FIG. 13: Same as Fig. 11, now with staggered cuts pe
T > p⌫T on the decay leptons as indicated in the figure

for the DYNNLO code (left) and the MATRIX code (right).
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FIG. 14: Same as Fig. 13 using predictions by the MCFM code.

showed severe numerical instabilities. For the agreement of the NNLO MCFM results with FEWZ, we
find a similar pattern of increasing deviations with increasing electron pseudo-rapidity ⌘e, which
become significant for ⌘e & 1.0. The two choices of smaller ⌧cut values in MCFM, 1 · 10�3 and
4 ·10�4, lead to the same NNLO predictions for Ae, within the numerical uncertainites.

Finally, Figs. 13 and 14 show the DØ data and the predictions of DYNNLO, MATRIX and MCFM
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