P. Connor

Introduction

Measurements

Interpretation

Summary & Conclusions

Back-up

UH 1/12

Recent jet measurements at CMS Measurements at 5.02 and 13 TeV QCD interpretation of inclusive jet production at 13 TeV

Patrick L.S. CONNOR

(on behalf of the CMS collaboration)

Universität Hamburg

26 July 2021

CMS Experiment at the LHC, CERN Data recorded: 2016-Sep-27 14:40:45.336640 GMT Run / Event / LS: 281707 / 1353407816 / 851

Introduction

Motivation Inclusive jet Multijet

P. Connor

Introduction Motivation Inclusive jet Multijet

Measurements

Interpretation

Summary & Conclusions

Back-up

UH 2/12

Motivation

P Connor

Motivation Inclusive jet Multijet

Measure-

Interpreta-

Summary &

Back-up

UH Ĥ

Factorisation [2]

experi

$$\underbrace{\sigma_{pp \to j\text{et}+X}}_{\text{experimental data}} = \sum_{ij \in gq\bar{q}} \overbrace{f_i(x_i, \mu_F^2) \otimes f_j(x_j, \mu_F^2)}^{\text{PDFs}} \\ \otimes \underbrace{\hat{\sigma}_{ij \to j\text{et}+X}\left(x_i, x_j, \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2}, \alpha_S(\mu_F^2)\right)}_{\text{PDFs}}$$

SM or ...

Motivation

Testing state-of-the art calculations

- NNLO (interpolation tables) Or NLO+NLL (resummation) FO predictions.
- NLO MC event generators with Transverse-Momentum-Dependent (TMD) PDFs.

P. Connor

Motivation Inclusive jet Multijet

Measure-

Interpreta-

Summary &

Back-up

UH Ĥ

Factorisation [2]

experi

$$\underbrace{\sigma_{pp \to jet+X}}_{\text{xperimental data}} = \sum_{ij \in gq\bar{q}} \underbrace{f_i(x_i, \mu_F^2) \otimes f_j(x_j, \mu_F^2)}_{\otimes \hat{\sigma}_{ij \to jet+X} \left(x_i, x_j, \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2}, \alpha_S(\mu_R^2) \otimes \mathcal{O}_{SM \text{ or SMEFT}} \right)}_{\text{SM or SMEFT}}$$

Motivation

Testing state-of-the art calculations

- NNLO (interpolation tables) Or NLO+NLL (resummation) FO predictions.
- NLO MC event generators with Transverse-Momentum-Dependent (TMD) PDFs.

Con

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \frac{4\pi}{2\Lambda^2} \sum_n c_n O_n$$

CI model	c_1	c_3	c_5
Purely left-handed	free	0	0
Vector-like	free	$2c_1$	c_1
Axial-vector-like	free	$-2c_{1}$	c_1
NB: colour-singlet model			

P. Connor

Introduction Motivation Inclusive jet Multijet

Measurements

Interpretation

Summary & Conclusions

Back-up

Motivation

Perform simultaneous fit of PDFs and α_S .

Phase space

 $\bullet \ p_T > 64 \text{ GeV} \qquad \bullet \ |y| < 2.0$

Measurement

- Low-pile-up 2015 data using AK4.
- Syst. effects corrected w. 1D toy unfolding.

UH 2/12

Inclusive jet 5.02 TeV

P. Connor

Introduction Motivation Inclusive jet Multijet

Measurements

Interpretation

Summary & Conclusions

Back-up

UHI

Motivation

Perform simultaneous fit of PDFs , α_S , m_t , and Wilson coefficient c_1 !

Phase space [8]	
• $p_T > 97 \text{ GeV}$	y < 2.0

Measurement

- High-pile-up 2016 data using AK4 & AK7.
- Syst. effects corrected
 w. 2D sample unfolding.

QCD interpretation w. ×Fitter [3, 4]

- HERA DIS data [5],
- CMS $t\bar{t}$ 3D cross section at 13 TeV [6],
- CMS inclusive jet 2D cross section at 13 TeV [7].

P. Connor

Introduction Motivation Inclusive jet Multijet

Measurements

Interpretation

Summary & Conclusions

Back-up

Observables Single-jet p_T spectra in di-, triand four-jet configurations.

 Azimuthal decorrelations in bins of multiplicity and leading jet p_T.

UH # 4/12

P. Connor

Introduction Motivation Inclusive jet Multijet

Measurements

Interpretation

Summary & Conclusions

Back-up

UH

P. Connor

Introduction Motivation Inclusive jet Multijet

Measurements

Interpretation

Summary & Conclusions

Back-up

UH #

Same analysis strategy as inclusive jet analysis at 13 TeV!

Measurements

Strategy Results

P. Connor

Introduction

Measurements Strategy Results

Interpretation

Summary & Conclusions

Back-up

UH #

- $\mathcal{L}_{int} = 27.4 \text{ pb}^{-1}$.
- Clustering with AK4 .
- Single-jet triggers and normalising each trigger with its respective luminosity.

Corrections

Data

- Jet energy and pile-up
- Detector inefficiencies and artifacts

Unfolding

- In the past, most jet measurements were unfolded with D'Agostini [9, 10].
- For the present measurements, we use least-square minimisation [11, 12].

$$\chi^2 = \min_{\mathbf{x}} \left[(\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{y})^{\mathsf{T}} \, \mathbf{V}^{-1} \left(\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{y} \right) \right]$$

 $\# \texttt{detector-level bins} = 2 \times \# \texttt{particle-level bins}_{(\texttt{but no Tikhonov regularisation)}}$

Strategy 5.02 TeV

Note

More RMs in back-up.

P. Connor

Introduction

Measurements Strategy Results

Interpretation

Summary & Conclusions

Back-up

UH 15/12

Data

- $\mathcal{L}_{int} = 36.3(33.5) \text{ fb}^{-1}$.
- Clustering with AK4 (AK7).
- Single-jet triggers and normalising event by event based on the prescale.

Corrections

- Jet energy and pile-up
- Detector inefficiencies and artifacts

Unfolding

- In the past, most jet measurements were unfolded with D'Agostini [9, 10].
- For the present measurements, we use least-square minimisation [11, 12].

$$\chi^2 = \min_{\mathbf{x}} \left[(\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{y})^{\mathsf{T}} \mathbf{V}^{-1} \left(\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{y} \right) \right]$$

 $\# \texttt{detector-level bins} = 2 \times \# \texttt{particle-level bins}_{(\texttt{but no Tikhonov regularisation})}$

Strategy 13 TeV

Note

More RMs in back-up.

Strategy **Techniques**

Resolution

- In former publications, resolution usually assumed to be a perfect, centred Gaussian.
- The present analyses have revisited this ansatz:

1 residual nonzero means should not be neglected in (un)smearing;

tails should be accounted at least to make a proper fit of the Gaussian core

 \rightarrow Good description with double-sided Crystal-Ball function [13].

UH μų. 6/12

tion

Strategy **Techniques**

Resolution

- In former publications, resolution usually assumed to be a perfect, centred Gaussian.
- The present analyses have revisited this ansatz:

1 residual nonzero means should not be neglected in (un)smearing;

- tails should be accounted at least to make a proper fit of the Gaussian core
- \rightarrow Good description with double-sided Crystal-Ball function [13].

Smoothness

- Bin-to-bin uncertainties should describe scattering of points around a smooth analytical function.
- Robust smooth fits based on Chebyshev polynomials.

$$\begin{split} f_n(p_T) &= \exp\left(\sum_{i=0}^n b_i T_i \left(2\frac{\log p_T / \log p_T^{\min}}{\log p_T^{\max} / \log p_T^{\min}} - 1\right)\right) \\ &\text{where} \quad T_0(x) = 1, \quad T_1(x) = x \\ &\text{and} \quad T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \end{split}$$

UH ΗĤ 6/12

Strategy

Results 5.02 TeV

Inclusive jet cross section (SMP-21-009 [14])

- Showing here comparison to (N)NLO obtained with NNLOJET [15, 16, 17] from interpolation tables [18, 19, 20, 21].
- Comparison to various global PDF sets also available.

Results

13 TeV

Measurements Strategy Results

Interpretation

Summary & Conclusions

Back-up

UH

Inclusive jet cross section (SMP-20-011 [7])

 Comparison to various global PDF [5, 22, 23, 24, 25] sets with NLO+NLL [26] obtained via k-factor technique.

CMS

P. Connor

Results

13 TeV

Measurements Strategy Results

Interpretation

Summary & Conclusions

Back-up

UH #

Inclusive jet cross section (SMP-20-011 [7])

- Comparison to various global PDF [5, 22, 23, 24, 25] sets with NLO+NLL [26] obtained via k-factor technique.
- Comparison to NNLO obtained with NNLOJET [15, 16, 17] from interpolation tables [18, 19, 20, 21].

CMS P Connor

Multijet cross section (SMP-21-006 [27])

- Testing production of extra radiations in the ME or in the PS.
- \blacksquare NLO generators describe better the p_T spectra of the 3rd and 4th jets.
- MC@NLO [28] using PB-TMD calculations [29, 30] rather successful.
- Predictions are normalised to the measured inclusive di-jet cross section.

UH # 9/12

P. Connor

Introduction

Measurements Strategy Results

Interpretation

Summary & Conclusions

Back-up

UH () 9/12

Multijet cross section (SMP-21-006 [27])

- Testing production of extra radiations in the ME or in the PS.
- NLO generators describe better the p_T spectra of the 3rd and 4th jets.
- MC@NLO [28] using PB-TMD calculations [29, 30] rather successful.
- Predictions are normalised to the measured inclusive di-jet cross section.

Results 13 TeV

Interpretation SMEFT

11/12

See also Toni's poster

Summary & Conclusions

P. Connor

Introduction

Measurements

Interpretation

Summary & Conclusions

Back-up

Summary & Conclusions

- The CMS Collaboration is preparing several publications about inclusive jet production in *pp* collisions at 5.02 and 13 TeV, and multijet production at 13 TeV.
- Corrections to jet energy resolution beyond pure Gaussian resolution are included in the unfolding and tests of smoothness have been developed to investigate the quality of the data analysis.
- Data are compared to FO predictions at NLO, NLO+NLL, and NNLO, as well as to MC event generators.
- A novel QCD interpretation including profiling studies and unbiased search for CI has been presented; no evidence for CI has been found.
 - \longrightarrow The three measurements will be soon submitted for publication.

Thank you for your attention!

Back-up

P. Connor

Data treatment Resolution Smoothnes Unfolding Response

Resolution

Double-sided Crystal Ball

$$f(x) = N \cdot \begin{cases} A_2(B_2 + z)^{-n_2} & \text{for } z \ge \alpha_2 \\ \exp \frac{-1}{2}z^2 & \text{for } -\alpha_1 < z < \alpha_2 \\ A_1(B_1 - z)^{-n_1} & \text{for } z \le -\alpha_1 \end{cases}$$

where

Interpretation

matrix Results

Acronyms

References

Visiting card

UH

$$z = \frac{x - \mu}{\sigma}$$

$$A_i = \left(\frac{n_i}{|\alpha_i|}\right)^{n_i} \exp \frac{-1}{2} |\alpha_i|^2$$

$$B_i = \frac{n_i}{|\alpha_i|} - |\alpha_i|$$

$$C_i = \frac{n_i}{\alpha_i} \frac{1}{n_i - 1} \exp \frac{-1}{2} |\alpha_i|^2$$
$$D = \sqrt{\frac{\pi}{2}} \left(\operatorname{erf} \frac{|\alpha_2|}{\sqrt{2}} + \operatorname{erf} \frac{|\alpha_1|}{\sqrt{2}} \right)$$
$$N = \frac{1}{\sigma(C_1 + C_2 + D)}$$

Modified "NSC" function

$$\mathsf{JER} = \sqrt{\left(\frac{p_0}{p_{\rm T}}\right)^2 + \frac{p_1^2}{p_{\rm T}^{p_3}} + p_2^2}$$

P. Connor

Data treat

- Resolution
- Unfolding Response
- matrix Correlation
- Results
- Interpretation
- Acronyms
- References
- Visiting card

UH #14/12

Fit procedure

Difficulty: 6 parameters to fit, 2 of them being particularly unstable

- Naïve Gaussian fit to get a preliminary value of μ and σ.
- **2** Trick to find transition points k_L and k_R (see below).
- 3 Fit each tail separately to get a preliminary value for n_L and n_R .
- Finally repeat a global fit with 6 free parameters and limited ranges.

Find the transition points

$$\log f(x) = \log N - \frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \Big(\log f(x) \Big) = -\frac{x-\mu}{\sigma^2}$$

 \longrightarrow Use numerical derivative to find the transition points

Resolution

P. Connor

Data treatment Resolution

Smoothness Unfolding

Response

Correlation matrix

- Results
- Interpretation
- Acronyms
- Reference
- Visiting card

UH 15/12

Fit function

$$f_n(p_T) = \exp\left(\sum_{i=0}^n b_i T_i \left(2\frac{\log p_T / \log p_T^{\min}}{\log p_T^{\max} / \log p_T^{\min}} - 1\right)\right)$$

where
$$T_0(x) = 1$$
, $T_1(x) = x$
and $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

Tests of smoothness

Applications

Robust fit with an **iterative method**:

Combination of triggers

Effect of each calibration

Impact of unfolding

- guess the two first parameters from the first and last points of the spectrum;
- add one more parameter (initialised to zero), and fit all parameters;
- ${f 3}$ iterate "until" a satisfactory χ^2 is found.

Data treatment **Smoothness** $T_n(x)$ $\rightarrow x$

- Smoothness of the theory
- Smoothing of the systematic uncertainties

 $T_0(x) = 1, T_1(x) = x, T_2(x) = 2x^2 - 1,$ $T_2(x) = 4x^3 - 3x, T_3(x) = 8x^4 - 8x^2 + 1,$ etc.

...

Unfolding

Matrix inversion for binned data

$$\mathbf{A}\mathbf{x} + \mathbf{b} = \mathbf{y} \tag{1}$$

- x data spectrum at particle level (what we want);
- y data spectrum at detector level (measurement);
- **b** background spectrum at detector level (from simulated samples);
- A probability matrix (from simulated samples).
- $\longrightarrow \text{\textbf{possibly ill-conditioned matrix}} \text{ due to limited statistics of the simulated} \\ \text{ data used to construct } \mathbf{A}.$

CMS

P Connor

Resolution

Unfolding Response

Interpreta-

Acronyms

Visiting card

P. Connor

Response matrix Correlatio matrix Results

Interpretation Acronyms

References Visiting card

> UHI #

Response matrix

P. Connor

Data

Response

matrix

matrix

Results

Interpreta-

Acronyms

References

Visiting card

UΗ

18/12

曲

Response matrix

P. Connor

Response

Correlation

Results

Interpreta-

Acronyms

References

Visiting card

UΗ

19/12

붜

Correlation matrix

P. Connor

Correlation matrix

- Acronyms
- References
- Visiting card

UH #

P. Connor

Response

Correlation

Results

Interpreta-

Acronyms

References

Visiting card

Correlation matrix

UH 21/12
P. Connor

Data treatment

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV

Interpretation

Acronyms References

Visiting card

UH 22/12

Inclusive jet at 5 TeV

P. Connor

Data treatment

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV

Interpretation

Acronyms References

Visiting card

UH 23/12

Inclusive jet at 5 TeV

P Connor

- Results Inclusive jet at 5 TeV Inclusive jet at
- production at 13 TeV
- Interpreta-
- Acronyms
- Visiting card

UH 茁 24/12

Inclusive jet at 5 TeV

p_ (GeV)

p_ (GeV)

P Connor

Results 5 TeV Inclusive jet at

production at

Interpreta-

Acronyms

Visiting card

Inclusive jet at 5 TeV

p_ (GeV)

p_ (GeV)

P. Connor

Data treatme

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV Multijet

production at 13 TeV

Interpretation

Acronyms

References

Visiting card

UH 26/12

Inclusive jet at 13 TeV

P. Connor

Data treatment

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV Multijet

production at 13 TeV

Interpretation

Acronyms

References

Visiting card

UH 27/12

P. Connor

Data treatment

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV Multijet

production at 13 TeV

Interpretation

Acronyms

References

Visiting card

Inclusive jet at 13 TeV

Data treatmen

CMS

P. Connor

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV

Interpretation

Acronyms

References

Visiting card

UH # 29/12

P. Connor

Multijet production at 13 TeV

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV Multiplicity

Single-jet spectra

Interpretation

Acronyms

References

Visiting card

UH # 30/12

Data treatment

CMS

P Connor

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV Multiplicity

spectra

tion

Acronyms

References

Visiting card

Data treatment

CMS

P Connor

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

production at 13 TeV Multiplicity

spectra Interpretation

Acronyms

References

Visiting card

Data treatment

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV Multiplicity

spectra Interpretation

Acronyms

References

Visiting card

UH 233/12

CMS P Connor

Data treatment

CMS

P Connor

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV Multiplicity

Single-jet spectra

tion

Acronyms

References

Visiting card

CMS P Connor

Data treatmen

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV Multiplicity

Single-jet spectra

Interpretation

Acronyms

References

Visiting card

CMS

P. Connor

Data treatment

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV Multiplicity

Single-jet spectra

Interpretation

Acronyms

References

Visiting card

P. Connor

Data treatment

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV

Multiplicity Single-jet spectra

Interpretation

Acronyms

References

Visiting card

UH #

Multijet production at 13 TeV

Multiplicity

CMS

P. Connor

Data treatment

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV Multijet

production at 13 TeV Multiplicity

Single-jet spectra

Interpretation

Acronyms

References

Visiting card

Data treatment

CMS

P Connor

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV Multijet

production at 13 TeV Multiplicity

Single-jet spectra

Interpretation

Acronyms

References

Visiting card

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV Multijet

CMS

P Connor

production at 13 TeV Multiplicity Single-jet

Interpretation

Acronyms

References

Visiting card

UH 112

CMS

P. Connor

Data treatment

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV Multiigt

production at 13 TeV

Multiplicity Single-jet spectra

Interpretation

Acronyms

References

Visiting card

Single-jet spectra

CMS

P. Connor

Data treatmen

Results Inclusive jet at 5 TeV Inclusive jet at 13 TeV

Multijet production at 13 TeV

Multiplicity Single-jet spectra

Interpretation

Acronyms

References

Visiting card

Motivation

Inclusive jet measurements at LHC

\sqrt{s}	ATLAS	CMS
$2.76 { m TeV}$	0.0002 fb^{-1} [31]	0.0054 fb^{-1} [32]
$7 { m TeV}$	4.5 fb^{-1} [33]	5.0 fb ⁻¹ [34, 35]
$8 \mathrm{TeV}$	20 fb^{-1} [36]	20 fb^{-1} [37]
$13 { m TeV}$	3.2 fb^{-1} [38]	0.071 fb^{-1} [39]

Unfold data.

• Constrain α_S and PDFs with SM predictions.

- Fold SMEFT predictions with existing PDF.
- Constrain CI.

Question

But what if the CIs have already been absorbed in the PDF?

UH 梢 43/12

Corrections NP corrections

UH #

CMS

P. Connor

Data treatmen

Results Interpreta-

NP corrections

Acronyms

Visiting card

Corrections EW corrections

UΗ

Ĥ 45/12

CMS

P. Connor

Results Interpreta-

Profiling

SMEFT Fits Acronyms

References

Profiling

Method

$$\begin{split} \chi^2 &= \sum_{i=1}^{N_{\text{data}}} \frac{\left(\sigma_i^{\text{exp}} + \sum_{\alpha} \Gamma_{i\alpha}^{\text{exp}} b_{\alpha}^{\text{exp}} - \sigma_i^{\text{th}} - \sum_{\beta} \Gamma_{i\beta}^{\text{th}} b_{\beta}^{\text{th}}\right)^2}{\Delta_i^2} + \sum_{\alpha} (b_{\alpha}^{\text{exp}})^2 + \sum_{\beta} (b_{\beta}^{\text{th}})^2 \\ f_0' &= f_0 + \sum_{\beta} b_{\beta}^{\text{th}(\min)} \left(\frac{f_{\beta}^+ - f_{\beta}^-}{2} - b_{\beta}^{\text{th}(\min)} \frac{f_{\beta}^+ + f_{\beta}^- - 2f_0}{2}\right) \end{split}$$

CMS

P. Connor

Data treatment Results Interpretation

Motivation

PDFs SM(EFT) SM Fits SMEFT Fits Acronyms References Visiting card

P. Connor

Results Interpreta-

PDFs Acronyms Visiting card

UH

Goal

Investigate reduction of uncertainties with the present data with existing PDF set.

梢

Impact on PDF, α_S , m_t , and c_1

Using 13-TeV CMS data on top of CT14

Both NLO & NNLO predictions.

Profiling

PDFs

P. Connor

Data treatmen

Results

Interpretation Motivation Corrections Profiling PDFs SM(EFT) SM Fits SMEFT Fits Acronyms References Visiting card

Profiling

SM(EFT)

Impact on PDF, α_S , m_t , and c_1

Profiling method is applied on the various parameters separately.

SM Fits

Parameterisation

$$\begin{split} xg(x) &= A_g x^{B_g} (1-x)^{C_g} \left(1+E_g x^2\right) \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+D_{u_v} x\right) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} \\ x\overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}} \end{split}$$

Results

Strong reduction of the gluon PDF uncertainty.

SM parameters

 $\alpha_S = 0.1188 \pm 0.0017$ (fit) ± 0.0022 (model and param.)

 $m_t^{\text{pole}} = 170.4 \pm 0.6 \text{(fit)} \pm 0.1 \text{(model and param.)}$

SMEFT Fits

Parameterisation

$$\begin{split} xg(x) &= A_g x^{B_g} (1-x)^{C_g} (1+E_g x^2) \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+D_{u_v} x+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} (1+D_{d_v} x) \\ x\overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} \\ x\overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}} \end{split}$$

Results

SMEFT fits lead to results compatible w. SM.

SM parameters

 $\alpha_S = 0.1187 \pm 0.0016 \text{(fit)} \pm 0.0030 \text{(model and param.)}$

 $m_t^{\text{pole}} = 170.4 \pm 0.6 (\text{fit}) \pm 0.3 (\text{model and param.})$

150/12

UH

Acronyms I

- NLO Next to Leading Order. 4–6, 17–21, 23, 24, 26, 62
- NNLO Next to Next to Leading Order. 4–6, 18, 19, 23, 24, 26, 62
 - PB Parton Branching. 20, 21
 - PDF Parton Distribution Function. 4–8, 18, 19, 23, 58, 62–64
 - PS Parton Shower. 20, 21
- QCD Quantum Chromodynamics. 7, 8, 23, 24, 26
- RM Response Matrix. 13, 14
- SM Standard Model. 4-6, 24, 58, 64, 65
- SMEFT Standard Model Effective Field Theory. 4–6, 24, 58, 65
 - TMD Transverse-Momentum-Dependent. 4–6, 20, 21

- treatment
- Results
- Interpretation
- Acronyms
- References
- Visiting card

UH # 51/12

- AK4 anti k_T algorithm (R = 0.4). 7–11, 13, 14 AK7 anti k_T algorithm (R = 0.7). 8, 14
- CI Contact Interaction. 4–6, 26, 58
- CMS Compact Muon Solenoid. 7, 8, 26, 58, 62
- DIS Deeply Inelastic Scattering. 7, 8
- FO fixed order. 4-6, 26
- HERA Hadron-Elektron-RingAnlage. 7, 8
- LHC Large Hadron Collider. 58
- MC Monte Carlo. 4–6, 26 ME Matrix Element. 20, 21
- NLL Next to Leading Logarithm. 4-6, 18, 19, 26

CMS P Connor

References I

Data treatment Results

CMS

P Connor

Interpretation

Acronyms

References

Visiting card

- CMS Collaboration and Thomas Mc Cauley. "Displays of an event with two jets with transverse momentum of more than 3 TeV as seen in the CMS detector". CMS Collection. 2021. URL: https://cds.cern.ch/record/2775841.
- John C. Collins, Davison E. Soper, and George F. Sterman. "Factorization of Hard Processes in QCD". In: Adv. Ser. Direct. High Energy Phys. 5 (1989), pp. 1–91. DOI: 10.1142/9789814503266_0001. arXiv: hep-ph/0409313 [hep-ph].
- V. Bertone et al. "xFitter 2.0.0: An Open Source QCD Fit Framework". In: PoS DIS2017 (2018), p. 203. DOI: 10.22323/1.297.0203. arXiv: 1709.01151 [hep-ph].
- S. Alekhin et al. "HERAFitter, open source QCD fit project". In: Eur. Phys. J. C 75 (2015), p. 304. DOI: 10.1140/epjc/s10052-015-3480-z. arXiv: 1410.4412 [hep-ph].
- H. Abramowicz et al. "Combination of measurements of inclusive deep inelastic e[±]p scattering cross sections and QCD analysis of HERA data". In: Eur. Phys. J. C 75 (2015), p. 580. DOI: 10.1140/epjc/s10052-015-3710-4. arXiv: 1506.06042 [hep-ex].

Albert M Sirunyan et al. "Measurement of tt normalised multi-differential cross sections in pp collisions at $\sqrt{s} = 13$ TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions". In: Eur. Phys. J. C 80 (2020), p. 658. DOI: 10.1140/epjc/s10052-020-7917-7. arXiv: 1904.05237 [hep-ex].

References II

.

CMS

P Connor

- Results
- Interpretation
- Acronyms
- References Visiting card

- Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at $\sqrt{s} = 13$ TeV. Tech. rep. Geneva: CERN, 2021. URL: http://cds.cern.ch/record/2776732.
- W.J. Stirling. Private communication. http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html. 2012.
- G. D'Agostini. "A Multidimensional unfolding method based on Bayes' theorem". In: Nucl. Instrum. Meth. A362 (1995), pp. 487–498. DOI: 10.1016/0168-9002(95)00274-X.
- G. D'Agostini. "Improved iterative Bayesian unfolding". In: ArXiv e-prints (Oct. 2010). arXiv: 1010.0632 [physics.data-an].

- Stefan Schmitt. "TUnfold: an algorithm for correcting migration effects in high energy physics". In: JINST 7 (2012), T10003. DOI: 10.1088/1748-0221/7/10/T10003. arXiv: 1205.6201 [physics.data-an].
- - Stefan Schmitt. "Data Unfolding Methods in High Energy Physics". In: EPJ Web Conf. 137 (2017), p. 11008. DOI: 10.1051/epjconf/201713711008. arXiv: 1611.01927 [physics.data-an].

John Erthal Gaiser. "Charmonium spectroscopy from radiative decays of the $J\Psi$ and ψ' ". PhD thesis. Stanford University, 1983.

References III

Data treatment

CMS

P Connor

Results

Interpretation

Acronyms

References Visiting card Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt{s} = 5.02 \text{TeV}$. Tech. rep. Geneva: CERN, 2021.

J Currie, E. W. N. Glover, and J Pires. "Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC". In: Phys. Rev. Lett. 118 (2017), p. 072002. DOI: 10.1103/PhysRevLett.118.072002. arXiv: 1611.01460 [hep-ph].

James Currie et al. "Single Jet Inclusive Production for the Individual Jet p_T Scale Choice at the LHC". In: Acta Phys. Polon. B 48 (2017), p. 955. DOI: 10.5506/APhysPolB.48.955. arXiv: 1704.00923 [hep-ph].

Thomas Gehrmann et al. "Jet cross sections and transverse momentum distributions with NNLOJET". In: **PoS** RADCOR2017 (2018). Ed. by Andre Hoang and Carsten Schneider, p. 074. DOI: 10.22323/1.290.0074. arXiv: 1801.06415 [hep-ph].

T. Carli et al. "A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project". In: Eur. Phys. J. C 66 (2010), p. 503. DOI: 10.1140/epjc/s10052-010-1255-0. arXiv: 0911.2985 [hep-ph].

T. Kluge, K. Rabbertz, and M. Wobisch. "FastNLO: Fast pQCD calculations for PDF fits". In: Deep inelastic scattering. Proceedings, 14th International Workshop, DIS 2006, Tsukuba, Japan. 2006, p. 483. DOI: 10.1142/9789812706706_0110. arXiv: hep-ph/0609285 [hep-ph]. CMS P Connor

Data treatment

Results

Interpretation

Acronyms

References

Visiting card

UHI

55/12

M. Wobisch et al. "Theory-Data Comparisons for Jet Measurements in Hadron-Induced Processes". 2011.

References IV

Daniel Britzger et al. "New features in version 2 of the fastNLO project". In: Proceedings, 20th International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2012): Bonn, Germany. 2012, p. 217. DOI: 10.3204/DESY-PROC-2012-02/165. arXiv: 1208.3641 [hep-ph].

Sayipjamal Dulat et al. "New parton distribution functions from a global analysis of quantum chromodynamics". In: Phys. Rev. D 93 (2016), p. 033006. DOI: 10.1103/PhysRevD.93.033006. arXiv: 1506.07443 [hep-ph].

Richard D. Ball et al. "Parton distributions from high-precision collider data". In: Eur. Phys. J. C 77 (2017), p. 663. DOI: 10.1140/epjc/s10052-017-5199-5. arXiv: 1706.00428 [hep-ph].

S. Alekhin et al. "Parton distribution functions, α_s , and heavy-quark masses for LHC Run II". In: Phys. Rev. D 96 (2017), p. 014011. DOI: 10.1103/PhysRevD.96.014011. arXiv: 1701.05838 [hep-ph].

References V

Data treatment

CMS

P Connor

Results

Interpretation

Î

Acronyms

References

Visiting card

UH 11 56/12

- Xiaohui Liu, Sven-Olaf Moch, and Felix Ringer. "Phenomenology of single-inclusive jet production with jet radius and threshold resummation". In: Phys. Rev. D 97 (2018), p. 056026. DOI: 10.1103/PhysRevD.97.056026. arXiv: 1801.07284 [hep-ph].
 - Cross section measurements of jet multiplicity and jet transverse momenta in multijet events at $\sqrt{s} = 13 \text{TeV}$. Tech. rep. Geneva: CERN, 2021.
- J. Alwall et al. "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations". In: JHEP 07 (2014), p. 079. DOI: 10.1007/JHEP07(2014)079. arXiv: 1405.0301 [hep-ph].
- A Bermudez Martinez et al. "Collinear and TMD parton densities from fits to precision DIS measurements in the parton branching method". In: Physical Review D 99.7 (2019), p. 074008.
- S. Baranov et al. "CASCADE3 A Monte Carlo event generator based on TMDs". In: Eur. Phys. J. C 81 (2021), p. 425. DOI: 10.1140/epjc/s10052-021-09203-8. arXiv: 2101.10221 [hep-ph].

Georges Aad et al. "Measurement of the inclusive jet cross section in pp collisions at $\sqrt{s} = 2.76$ TeV and comparison to the inclusive jet cross section at $\sqrt{s} = 7$ TeV using the ATLAS detector". In: Eur. Phys. J. C 73 (2013), p. 2509. DOI: 10.1140/epjc/s10052-013-2509-4. arXiv: 1304.4739 [hep-ex].

References VI

ent

CMS

P Connor

Results

Interpretation

Acronyms

References

Visiting card

Vardan Khachatryan et al. "Measurement of the inclusive jet cross section in pp collisions at $\sqrt{s} = 2.76$ TeV". In: Eur. Phys. J. C 76 (2016), p. 265. DOI: 10.1140/epjc/s10052-016-4083-z. arXiv: 1512.06212 [hep-ex].

Georges Aad et al. "Measurement of the inclusive jet cross-section in proton-proton collisions at $\sqrt{s} = 7$ TeV using 4.5 fb⁻¹ of data with the ATLAS detector". In: JHEP 02 (2015). [Erratum: JHEP09,141(2015)], p. 153. DOI: 10.1007/JHEP02(2015)153. arXiv: 1410.8857 [hep-ex].

Serguei Chatrchyan et al. "Measurements of Differential Jet Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 7$ TeV with the CMS Detector". In: Phys. Rev. D 87 (2013). [Erratum: JHEP09,141(2015)], p. 112002. DOI: 10.1103/PhysRevD.87.112002. arXiv: 1212.6660 [hep-ex].

Serguei Chatrchyan et al. "Measurement of the Ratio of Inclusive Jet Cross Sections using the Anti- k_T Algorithm with Radius Parameters R = 0.5 and 0.7 in pp Collisions at $\sqrt{s} = 7$ TeV". In: Phys. Rev. D 90 (2014), p. 072006. DOI: 10.1103/PhysRevD.90.072006. arXiv: 1406.0324 [hep-ex].

References VII

P. Connor

CMS

- Data treatmen Results
- .
- Interpretation
- Acronyms
- References
- Visiting card

Vardan Khachatryan et al. "Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at $\sqrt{s} = 8$ TeV and cross section ratios to 2.76 and 7 TeV". In: JHEP 03 (2017), p. 156. DOI: 10.1007/JHEP03(2017)156. arXiv: 1609.05331 [hep-ex].

- M. Aaboud et al. "Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector". In: JHEP 05 (2018), p. 195. DOI: 10.1007/JHEP05(2018)195. arXiv: 1711.02692 [hep-ex].
- Vardan Khachatryan et al. "Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt{s} = 13$ TeV". In: Eur. Phys. J. C 76 (2016), p. 451. DOI: 10.1140/epjc/s10052-016-4286-3. arXiv: 1605.04436 [hep-ex].

- Serguei Chatrchyan et al. "Search for Contact Interactions Using the Inclusive Jet p_T Spectrum in pp Collisions at $\sqrt{s} = 7$ TeV". In: Phys. Rev. D 87 (2013), p. 052017. DOI: 10.1103/PhysRevD.87.052017. arXiv: 1301.5023 [hep-ex].
- Serguei Chatrchyan et al. "Search for quark compositeness in dijet angular distributions from pp collisions at $\sqrt{s} = 7$ TeV". In: JHEP 05 (2012), p. 055. DOI: 10.1007/JHEP05 (2012)055. arXiv: 1202.5535.

UH # 58/12 CMS P Connor

Data treatment Results Interpretation Acronyms References Visiting card

Patrick L.S. CONNOR Universität Hamburg https://www.desy.de/~connorpa

Institut für Experimentalphysik

Tel.: +49 40 8998-2617 Geb.: DESY Campus 68/121

Center for Data Computing and natural Sciences Tel.: Geb.: Notkestraße 9

UH 259/12