

2610712021

Jet substructure measurements in CMS experiment

Suman Chatterjee for the CMS Collaboration

HEPHY Vienna

Email: suman.chatterjee@cern.ch

EPS-HEP Conference 2021 Hamburg, Germany Online

Improved understanding of QCD

Resummation region enhanced by jet grooming

Improved understanding of QCD

Resummation region enhanced by jet grooming

Precision tests of SM parameters (and probing BSM effects)

 α_s running, top quark mass

...

Why jet substructure measurements?

Improved understanding of QCD

Resummation region enhanced by jet grooming

Tuning general purpose MC generators

Understanding parton shower evolution Improving underlying event description

Improves modeling of particle taggers \rightarrow Helps measurements & searches

Precision tests of SM parameters (and probing BSM effects)

Improved understanding of QCD

Resummation region enhanced by jet grooming

Tuning general purpose MC generators

Understanding parton shower evolution Improving underlying event description

Improves modeling of particle taggers \rightarrow Helps measurements & searches

Precision tests of SM parameters (and probing BSM effects)

Sensing emergent phenomena

QGP Dead cone effects

...

Reference	\sqrt{s}	Collision	Events	Jet sample and kinematic region	Observables
1204.3170	7 TeV	рр	Inclusive jets	q/g-jets (AK7), $20 < p_{_{\rm T}} < 1000 \text{ GeV}$ q/g-jets (AK5), $50 < p_{_{\rm T}} < 1000 \text{ GeV}$	Jet shapes, charged hadron multiplicity, width
1205.5872	2.76 TeV	pp/PbPb	Dijet	q/g-jets (AK3), $40 < p_{_{\rm T}} < 320 \text{ GeV}$	Jet fragmentation function $p_{\parallel}^{\text{track}}$
1310.0878	2.76 TeV	pp/PbPb	Inclusive jets	q/g-jets (AK3), $100 < p_{T} < 300 \text{ GeV}$	Jet fragmentation function $z = \frac{1}{p^{\text{jet}}}, \zeta = \ln \frac{1}{z},$
1406.0932	2.76 TeV	pp/PbPb	Inclusive jets	q/g-jets (AK3), $p_{_{\rm T}}$ > 100 GeV	Jet fragmentation function
1310.0878	2.76 TeV	pp/PbPb	Dijet	q/g-jets (AK3), $p_{T}^{>}$ 100 GeV	Jet shapes
1809.08602	2.76 TeV	pp/PbPb	Dijet	q-jets (AK3), $p_{T}^{>}$ 30 GeV	Jet shapes
HIN-19-003	2.76 TeV	pp/PbPb	Dijet	q/g-jets (AK4), $p_{T}^{>}$ 50 GeV	Jet shapes
QCD-10-041	7 TeV	рр	Dijet	q/g-jets (KT6), 97 < p _T < 1032 GeV	Subjet multiplicities
1706.05868	8 TeV	рр	Inclusive jets	q/g-jets (AK5), $400 < p_{T} < 1500 \text{ GeV}$	Jet charge List of jet substructure
2004.00602	5.02 TeV	pp/PbPb	Inclusive jets	q/g-jets (AK4), $p_{T}^{>}$ 120 GeV	Jet charge measurements in CMS
1703.06330	8 TeV	рр	tī	top-jets (CA12), p _T > 400 GeV	Jet mass
1303.4811	8 TeV	рр	Dijet + W/Z jet	q/g-jets (AK7), 220 < p _T < 1500 GeV q-jets (AK7, CA8/12), 125 < p _T < 450 GeV	Nominal + groomed (trimming, pruning, filtering) jet mass $\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{\overset{$
1805.05145	5.02 TeV	pp/PbPb	Inclusive jets	q/g-jets (AK4), 140 < p _T < 300 GeV	Soft-drop jet mass
1807.05974	13 TeV	рр	Dijet	q/g-jets (AK8), 200 < p _T < 3000 GeV	Nominal + soft-drop jet mass
1911.03800	13 TeV	рр	tī	top-jets (XC12), p _T > 400 GeV	Xcone groomed jet mass
1708.09429	5.02 TeV	pp/PbPb	Inclusive jets	q/g-jets (AK4), $140 < p_{_{\rm T}} < 500 \text{ GeV}$	Soft-drop splitting function
1808.07340	13 TeV	рр	tī	q-jets (AK4), $p_T > 30 \text{ GeV}$ g-jets (AK4), $p_T > 30 \text{ GeV}$ b-jets (AK4), $p_T > 30 \text{ GeV}$	Jet substructure and soft-drop observables
SMP-20-010	13 TeV	рр	Dijet, Z+jets	q/g-jets (AK4), $50 < p_{_{\rm T}} < 4000 \text{ GeV}$ q-jets (AK4), $50 < p_{_{\rm T}} < 4000 \text{ GeV}$	Jet angularities 3

Reference	\sqrt{s}	Collision	Events	Jet sample and kinematic region	Observables
1204.3170	7 TeV	рр	Inclusive jets	q/g-jets (AK7), $20 < p_{_{\rm T}} < 1000 \text{ GeV}$ q/g-jets (AK5), $50 < p_{_{\rm T}} < 1000 \text{ GeV}$	Jet shapes, charged hadron multiplicity, width
1205.5872	2.76 TeV	pp/PbPb	Dijet	q/g-jets (AK3), $40 < p_{_{\rm T}} < 320 \text{ GeV}$	Jet fragmentation function $p_{\parallel}^{\text{track}}$
1310.0878	2.76 TeV	pp/PbPb	Inclusive jets	q/g-jets (AK3), $100 < p_{T} < 300 \text{ GeV}$	Jet fragmentation function $z = \frac{1}{p^{\text{jet}}}, \zeta = \ln \frac{1}{z},$
1406.0932	2.76 TeV	pp/PbPb	Inclusive jets	q/g-jets (AK3), $p_{T}^{>}$ 100 GeV	Jet fragmentation function
1310.0878	2.76 TeV	pp/PbPb	Dijet	q/g-jets (AK3), $p_{T}^{>}$ 100 GeV	Jet shapes
1809.08602	2.76 TeV	pp/PbPb	Dijet	q-jets (AK3), $p_{T}^{>}$ 30 GeV	Jet shapes
HIN-19-003	2.76 TeV	pp/PbPb	Dijet	q/g-jets (AK4), $p_{T}^{>}$ 50 GeV	Jet shapes
QCD-10-041	7 TeV	рр	Dijet	q/g-jets (KT6), 97 < p_{T}^{2} < 1032 GeV	Subjet multiplicities
1706.05868	8 TeV	рр	Inclusive jets	q/g-jets (AK5), $400 < p_{T} < 1500 \text{ GeV}$	Jet charge List of jet substructure
2004.00602	5.02 TeV	pp/PbPb	Inclusive jets	q/g-jets (AK4), $p_{T}^{>}$ 120 GeV	Jet charge measurements in CMS
1703.06330	8 TeV	рр	tī	top-jets (CA12), p _T > 400 GeV	Jet mass
1303.4811	8 TeV	рр	Dijet + W/Z jet	q/g-jets (AK7), 220 < p _T < 1500 GeV q-jets (AK7, CA8/12), 125 < p _T < 450 GeV	Nominal + groomed (trimming, pruning, filtering) jet mass
1805.05145	5.02 TeV	pp/PbPb	Inclusive jets	q/g-jets (AK4), $140 < p_{T} < 300 \text{ GeV}$	Soft-drop jet mass
1807.05974	13 TeV	рр	Dijet	q/g-jets (AK8), $200 < p_{T} < 3000 \text{ GeV}$	Nominal + soft-drop jet mass
1911.03800	13 TeV	рр	tī	top-jets (XC12), p _T > 400 GeV	Xcone groomed jet mass
1708.09429	5.02 TeV	pp/PbPb	Inclusive jets	q/g-jets (AK4), $140 < p_{_{\rm T}} < 500 \text{ GeV}$	Soft-drop splitting function
1808.07340 Highli	13 TeV	pp day's talk	tť	q-jets (AK4), $p_T > 30 \text{ GeV}$ g-jets (AK4), $p_T > 30 \text{ GeV}$ b-jets (AK4), $p_T > 30 \text{ GeV}$	Jet substructure and soft-drop observables
SMP-20-010	13 TeV	рр	Dijet, Z+jets	q/g-jets (AK4), 50 < p _T < 4000 GeV q-jets (AK4), 50 < p _T < 4000 GeV	Jet angularities 3

<u>Observables</u> Generalized angularities

n: jet axis

 $\beta \le 1$: Winner-takes-all (WTA) axis $\beta \ge 1$: Anti- k_{T} axis

<u>Observables</u> Generalized angularities

n: jet axis

 $\beta \le 1$: Winner-takes-all (WTA) axis $\beta \ge 1$: Anti- k_{T} axis

<u>Measurements</u>: Five λ_{κ}^{β} variables in quark- and gluon-enriched jet samples (results reported in particle-level)

Study motivated by JHEP 1707 (2017) 091 (Gras et al.)

<u>Measurements</u>: Five λ_{κ}^{β} variables in quark- and gluon-enriched jet samples (results reported in particle-level)

<u>Purpose</u>: Detailed understanding of jet composition & its modeling (not designing a quark-gluon tagger)

Quark- and gluon-enriched event samples

 $|m_{\mu\mu} - 90| < 20 \text{ GeV}$

 $p_T^{\mu\mu} > 30 \text{ GeV}$

Gluon-enriched jets from **dijet** region:

CMS-PAS-SMP-20-010

Quark- and gluon-enriched event samples

HEPHY

Differential distributions at particle-level

Gluon-enriched sample

CMS-PAS-SMP-20-010

Quark-enriched sample

Good modeling of data by PYTHIA parton shower in quark-enriched samples PYTHIA & HERWIG++ on opposite sides of data in gluon-enriched samples HERWIG++ describes the p_{τ} -dependence well but underestimates normalization

$<\lambda^{\beta}$ > in quark- and gluon-enriched samples

Z+ jet

CMS

$<\lambda^{\beta}$ > in quark- and gluon-enriched samples

Z+ jet \rightarrow q-enriched at [120, 150] GeV

CMS

$<\lambda^{\beta}_{\kappa}>$ in quark- and gluon-enriched samples

$<\lambda^{\beta}$ > in quark- and gluon-enriched samples

CMS

=> Mismodeling by generators not only in non-perturbative region

НЕРНҮ

$<\lambda^{\beta} >$ in quark- and gluon-enriched samples

CMS

- Better modeling of gluon-enriched samples in modern generators + UE tunes

CMS

1 2 tune describes gruon-enriched samples better than CI 5 tu

(larger α_s & smaller color reconnection range in CP2)

НЕРНҮ

- Sherpa LO+jet simulation is the closest to data

- Room for improvement of description by simulation

- Room for improvement of description by simulation
- Tagging efficiencies (measured using tag-and-probe method) are similar in data & simulation

9

W & top jet identification with DeepAK8 tagger

CMS.

- Tagging efficiencies (measured using tag-and-probe method) are similar in data & simulation

10

Summary and Outlook

- Comparison with analytic calculation in progress [JHEP 07 (2021) 076]
- Calibration measurement performed for heavy particle taggers
- More measurements are coming soon!

Summary and Outlook

• A detailed study of jet substructure observables is performed

Useful for

Parton shower

Better modeling of

Non-perturbative effects (hadronization, UE, ...)

Handle to reduce modeling uncertainty of particle identifiers exploiting jet substructure _____ Improve measurements & searches

pQCD calculations

Fixed order + resummation

- Comparison with analytic calculation in progress [JHEP 07 (2021) 076]
- Calibration measurement performed for heavy particle taggers
- More measurements are coming soon!

Extra material

Uncertainties in LHA

Showering+hadronization uncertainty is the dominant among all the systematic uncertainty sources Differences of the unfolded distributions derived using response matrices constructed from MG5+Pythia8 and Herwig++

Differential distributions at particle-level

CMS-PAS-SMP-20-010

Quark-enriched sample

Good modeling of data by PYTHIA parton shower in quark-enriched samples PYTHIA & HERWIG++ on opposite sides of data in gluon-enriched samples

Top tagging efficiency

				CMS-DP-20-025
Tagger	Working point	Signal efficiency [%]	Background efficiency [%]	
	$ au_{32} < 0.40$	17	0.2	_
	$ au_{32} < 0.46$	26	0.5	
AK8 PUPPI	$ au_{ m 32} < 0.54$	37	1.7	
	$ au_{ m 32} < 0.65$	49	5.1	
	$ au_{ m 32} < 0.80$	62	15.9	_
	$ au_{32} < 0.40$	16	0.1	
	$ au_{32} < 0.46$	23	0.3	
AK8 PUPPI $+$ subjet btag	$ au_{ m 32} < 0.54$	33	0.6	
	$ au_{ m 32} < 0.65$	43	1.8	
	$ au_{ m 32} < 0.80$	53	5.3	_
HOTVR PUPPI	$ au_{32} < 0.56$	37	2.6	
	Mistag rate 0.1%	37	0.1	_
DeepAK8	Mistag rate 0.5%	52	0.5	
DeepArto	Mistag rate 1.0%	59	1.0	
	Mistag rate 2.5%	67	2.5	
	Mistag rate 0.1%	28	0.1	_
DoopAK8 MD	Mistag rate 0.5%	48	0.5	
DeepArto MD	Mistag rate 1.0%	57	1.0	
	Mistag rate 2.5%	66	2.5	

Table 1: The top tagging efficiencies including the respective mass windows are estimated from simulation in 2018 before the template fit for the AK8 PUPPI, HOTVR and DeepAK8 taggers. The efficiencies for signal are measured in $t\bar{t}$ events where the angular distance between the generated top and the probe jet is $\Delta R < 0.6$. Background efficiencies are measured using QCD multijet events. Only events are considered where the probe jet fulfills $480 < p_T < 600$ GeV. The exact values of efficiencies strongly depend on the selection applied. Therefore, the purpose of the presented numbers is to give a rough estimate and comparison between algorithms.

W tagging efficiency

CMS-DP-20-025

Tagger	Working point	Signal efficiency [%]	Background efficiency [%]
	$ au_{21} < 0.35$	53	2.0
AK8 PUPPI	$ au_{21} < 0.45$	69	4.7
	$ au_{21}^{ ext{DDT}} < 0.43$	12	0.1
	$ au_{21}^{DDT} < 0.50$	32	0.6
	Mistag rate 0.5%	51	0.5
DeepAK8	Mistag rate 1.0%	62	1.0
DeepArto	Mistag rate 2.5%	74	2.5
	Mistag rate 5.0%	79	5.0
	Mistag rate 0.5%	38	0.5
DeepAK8 MD	Mistag rate 1.0%	50	1.0
DeepArto MD	Mistag rate 2.5%	66	2.5
	Mistag rate 5.0%	76	5.0

Table 2: The W tagging efficiencies including the respective mass windows are estimated from simulation in 2018 for the working points of the AK8 PUPPI and DeepAK8 taggers. The efficiencies for signal are measured in $Z' \rightarrow WW$ events where the angular distance between generated W and the probe jet is $\Delta R < 0.6$. Background efficiencies are measured using QCD multijet events. Only events are considered where the probe jet fulfills $300 < p_T < 500$ GeV. The exact values of efficiencies strongly depend on the selection applied. Therefore, the purpose of the presented numbers is to give a rough estimate and comparison between algorithms.