Measurements of prompt photon and Z boson production in association with jets at ATLAS

Heberth Torres (TU Dresden) on behalf of the ATLAS Collaboration

> EPS-HEP Conference July 27th, 2021

Photon and Z boson

Good coupling +to quarks

- Test resummation, perturbative QCD, PDF...
- Improve MC background description for BSM searches

Clean experimental signature Measured / reconstructed very precisely

Excellent QCD probe tool

Isolated photon measurements

- γ+2jets at 13 TeV (JHEP 03 (2020) 179)
 - $p_T^{\gamma} > 150 \text{ GeV}, p_T^{\text{jet}} > 100 \text{ GeV}$
 - Differential cross section vs. multiple observables in 3 regions: Inclusive, fragmentation enriched $p_T^{\gamma} < p_T^{jet2}$ and direct enriched $p_T^{\gamma} > p_T^{jet1}$
- γγ at 13 TeV (arXiv:2107.09330)
 - $p_T^{\gamma 1} > 40 \text{ GeV}, p_T^{\gamma 2} > 30 \text{ GeV}$
 - Inclusive differential cross section vs. multiple observables
- Predictions for 3γ and 4γ , at 8 and 13 TeV (ATL-PHYS-PUB-2021-001)
 - Compared to 8 TeV 3γ measurement

Background estimation for γ analyses

- Sample purity:
 - For γ +2jets (pT^γ > 150 GeV): ≥95%
 - For $\gamma\gamma$ (pT γ > 30 GeV): 35%-80%
- Main background: Jets: Energetic neutral hadrons within jets decaying to collimated γ-pairs → misidentified as single γ

Estimation based on non-correlation between EM shower shape and the isolation energy

• New source of background for $\gamma\gamma$:

Pileup of 2 γ +jet events,

0.6% inclusively, up to 6% differentially Estimated with track-info from $\gamma \rightarrow e^+e^-$ conversions

Leading uncertainties

- For γ +2jets: γ and jet energy scale
- For γγ: Background and isolation-requirement efficiency

Sherpa NLO predictions:

- $\Delta \phi(\gamma$ -jet) well described
- High m_{ii} mismodelling (similar to Z+jets) phase space

Results for γ +2jets

Integrated fiducial cross section for $\gamma\gamma$ and $\gamma\gamma\gamma$

Impressive impact from perturbative QCD on the event rate for these processes

Results for $\gamma\gamma$

 Generally good modelling of perturbative regions by NNLO and multi-leg merged NLO predictions

Soft QCD also described well by Sherpa NLO

(Theory prediction uncert. dominated by QCD scale variations)

Run: 362204 Event: 3323816408 2018-09-29 15:34:04 CEST

Z + jets measurements $\mathcal{L} = 35 f b^{-1}$ Using $Z \rightarrow ee/\mu\mu$ decays

- Collinear Z + jets (ATLAS-CONF-2021-033) Measure and study collinear emission of a Z boson from a high p_T jet
- Z + 1 or 2 b-jets (JHEP 07 (2020) 44)
 - Testing different flavor schemes of initial-state partons
 - Sensitive to gluon splitting

Collinear Z + jets

- Splitting in 5 regions:
 - Inclusive $(p_T^{jet} > 100 \text{ GeV})$,
 - High p_T ($p_T^{jet_1} > 500$ GeV),
 - Collinear (high p_T + min(ΔR) < 1.4),
 - Back-to-back (high p_T + min(ΔR) > 2.0),
 - High S_T (Scalar sum(p_T^{jet}) > 600 GeV)
- Main backgrounds:
 - ttbar: 2-7% (data driven estimation)
 - Diboson: 2-6%
 - EW Zjj: 1-3%
- Main uncertainties: Jet energy scale and resolution, unfolding (MC modelling and sample statistics)

q q

Results for collinear Z + jets

• Sherpa 2.2.11 (0-2p NLO, 3-5 LO) and MGPy8 FxFx (0-3p NLO) describe well N_{jets}

• Good modelling of $p_T(Z)/p_T(jet)$ by Sherpa

• Syst. uncert. on predictions dominated scale uncert.

- Z + at least 1 or 2 b-jets (pt)
- \bullet and ttbar for 2b-jet cat.

Z+2 b-jets

Sherpa shows significant improvement at low ΔR_{bb} compared to previous comparisons

Conclusion

Showed our recent progress on understanding QCD both from theory and experimental perspectives, using photons and Z bosons as tool in ATLAS

ATLAS

– **√**s = 13 TeV, 35.6 fb⁻¹

anti-k, jets, R = 0.4

p_____20 GeV, |y_et|<2.5

 $Z/\gamma^*(\rightarrow II) + \ge 2 \text{ b-jets}$

Sherpa 5FNS (NLO)

/// Data