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An artificial neural network is trained on Monte Carlo data, taking as input 
28 observables quantifying interaction topology and event characteristics.

In a regular neural network, the output is compressed to the [0;1] range by 
a sigmoid function. This results in a peak of false-positives in the signal 
region. Removing the output activation recovers a monotonic distribution, 
allowing e.g. interpolation methods for background estimation.

The neural network classifier 
features a much flatter efficiency 
than the classical method for a 
fixed cut, yielding at 10 TeV the 
same contamination for twice the 
signal efficiency.

For a 1-to-1 comparison, a 
moving cut is set such that both 
methods have the same 
efficiency. With a 95% efficient 
cut, the background rejection of 
neural nets is up to 8x better.

3a. Performances

3b. MC validation
MC is scaled to the real data, to verify there are no biases and to 
confirm the reliability of the method.

A cosmic ray space observatory in operations since December 
2015. It is equipped with a deep calorimeter (32 X0) able to 
detect electrons up to 10 TeV with a 1% energy resolution.

Electron identification is based on the interaction topology.
The classical method is to define such observable [Ambrosi et al.]
                     ζ = shower width × shower depth
Electrons have a lower ζ than protons and nuclei.

However ζ is limited at several TeV. A better method is required.


