

HERD: the space-borne High Energy cosmic-Radiation Detection facility Chiara Perrina (Chiara.Perrina@epfl.ch) on behalf of the HERD Collaboration

HERD in a nutshell

The High Energy cosmic-Radiation Detection (HERD) facility has been proposed as one of several space astronomy payloads onboard the **China's Space Station (CSS)**, planned for operation starting around 2027 for about 10 years.

The experiment is based on a 3D, homogeneous, isotropic and finely-segmented calorimeter that will measure the cosmic ray flux up to the *knee* region, search for indirect signals of he full gamma-ray sky.

CSS expected to be completed in 2022

of dark matter and monitor the
CALO: CALOrimeter
 Energy measurement
 Electron/proton separat
FIT: Flber Tracker
 Track reconstruction
 Low energy γ ray convert
Charge measurement ()
PSD: Plastic Scintillator
Charge measurement ()
• γ ray identification
SCD: Silicon Charge Det
 Charge measurement ()
TRD: Transition Radiatio
 Energy calibration of Te\
Field of view +/- 70° off the zer

Power	, < 1.5 kW
Mass	< 4 t

The objectives of HERD

Search for signatures of annihilation/decay products of **dark** matter in:

- energy spectrum and anisotropy of high energy electrons+positrons (10 GeV – 100 TeV);
- gamma-rays (100 MeV 100 TeV).

Measurements of energy spectrum of p and He up to a few PeV and heavier nuclei up to a few hundreds of TeV/n.

- knee of cosmic rays.
- the propagation mechanisms of cosmic rays.

Monitoring of the gamma-ray sky from 100 MeV to extend the Fermi-LAT catalog to energy > 300 GeV;

- search for dark matter signatures;
- and diffuse emission;
- detection of high energy gamma-ray bursts.

Multi-messenger astronomy

Flux(>100 MeV) (cm⁻² s⁻¹) ×10⁻⁸

Possible synergy with other experiments designed for: γ (CTA, LHAASO), neutrinos (KM3NeT, IceCube), and gravitational waves (LIGO, Virgo).

10³

Energy (MeV)

10²

Radiation length

Fiber readout

length

Nuclear interaction

nith

• The first direct measurement of p and He knees will be very important to understand the physical nature of the

• The extension of the B/C ratio to high energy will probe

• increase the chance to detect rare gamma-ray events;

• study of galactic and extragalactic gamma-ray sources

First readout system: Wavelength shifting fibers (WLSFs) coupled to Image Intensified scientific CMOS (IsCMOS) cameras

Preliminary

Spatial resolution = $(45.0 \pm 0.1) \mu m$ (taking into account the external beam telescope resolution)

CALO

- 7 x-y tracking planes in each sector (1 top and 4 side sectors) • 6 x + 10 y in each side plane
- 10 x + 10 y in each top plane
- Module = 1 fiber mat + 3 silicon photomultiplier (SiPM) arrays

Charge resolution for nuclei heavier than protons				
Ζ	μ	σ	σ/μ	
2	1.99	0.31	15 %	
3	3.07	0.40	13 %	
4	4.01	0.51	12 %	

- Requirements:

- hadronic showers.

Mean efficiency = 99.6 %

Left SiPM [1] Left SiPM [2] Right SiPM [1

PSD

protons from TRD.

Constant 0.008104 ± 0.01887