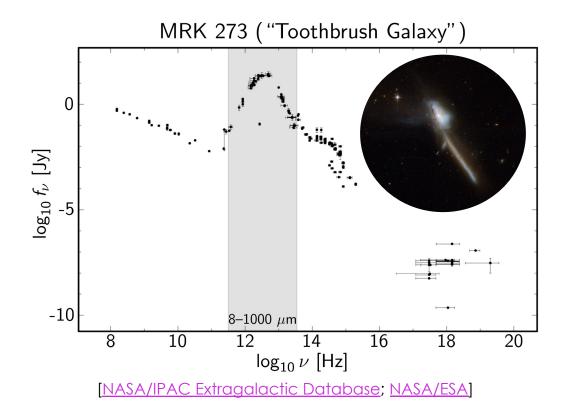


Searching for High-Energy Neutrinos from Ultra-Luminous Infrared Galaxies with IceCube

EPS-HEP, 27 July 2021 Astroparticle and GW: Part 4

Pablo Correa for the IceCube Collaboration pabcorcam@gmail.com

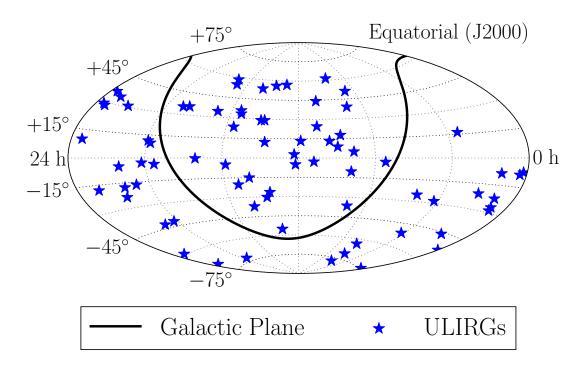


Ultra-Luminous Infrared Galaxies

- The most luminous objects in the IR sky
- ► $L_{IR} \ge 10^{12} L_{\odot}$ between 8–1000 micron
- Typically interacting galaxies
- Numerous source population
- Plausible sources of neutrinos
 - ULIRGs are mainly powered by starbursts
 - Possible contribution from active galactic nucleus

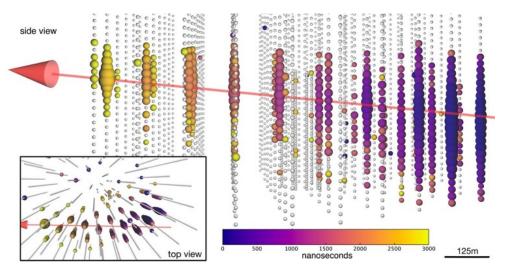
Selection of ULIRGs

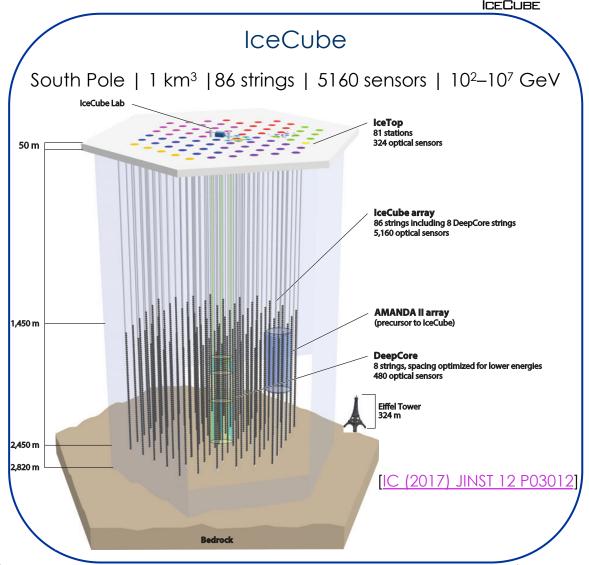
- ► Initial selection [see also Pos ICRC2019 860]
 - From three IRAS based catalogs
- ▶ 189 UHRGs



IRAS Revised Bright Galaxy Sample IRAS 1 Jy sample (40% of sky) Nardini+ sample (IRAS + Spitzer)

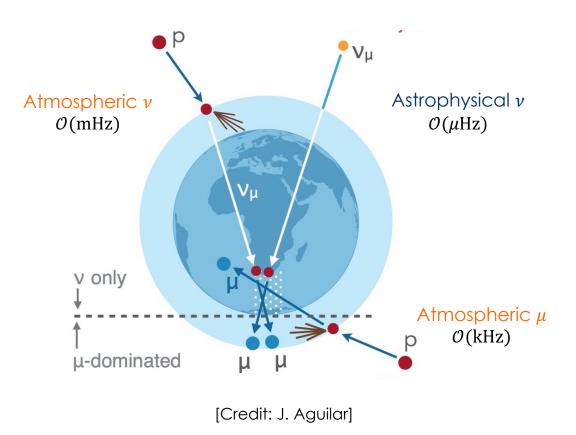
Sanders+ (2003) AJ 126 1607 Kim+ (1998) ApJS 119 41 Nardini+ (2010) MNRAS 405 2505


- Final selection
 - Completeness: find redshift to observe all ULIRGs
 - with $L_{IR} = 10^{12} L_{\odot}$
 - for IRAS sensitivity $f_{60} = 1$ Jy
 - Representative sample of 75 ULIRGs with $z \leq 0.13$

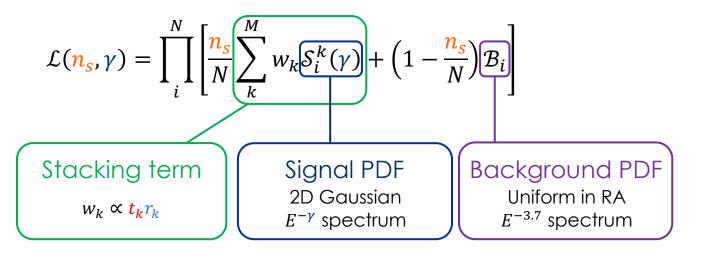

The IceCube Neutrino Observatory

- Optical Cherenkov telescope
 - Observe secondaries of ν interactions
- Focus on muon tracks
- Signatures of v_{μ} and \bar{v}_{μ}
- Good angular resolution, < 1° for $E_{\mu} \gtrsim 1 \text{ TeV}$

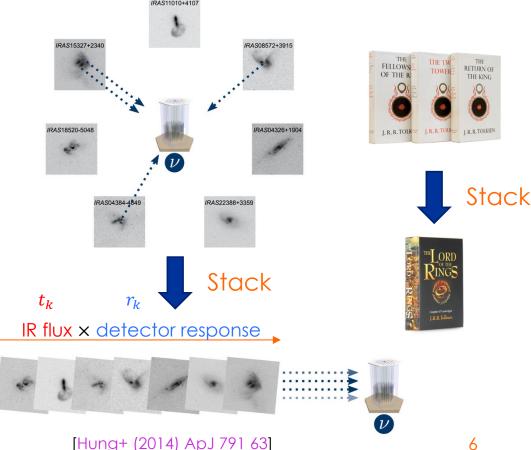
[IC (2018) Science 361 eeat1378]



Dataset & Background


- Use GFU data sample
- Well-reconstructed tracks
- Full 86-string detector between 2011–2018
- Predominantly atmospheric background
 - Induced by cosmic-ray air showers
- GFU reduced to 6.6 mHz all-sky rate

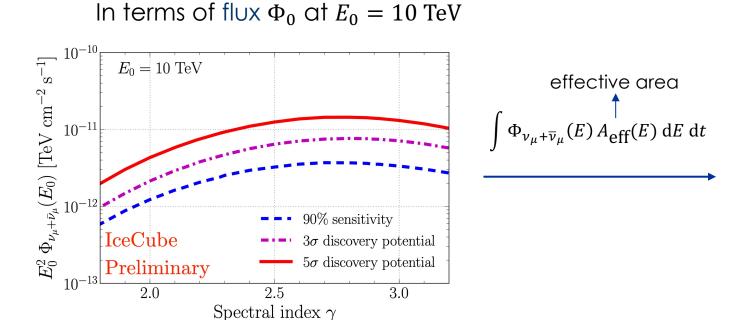
Sample	Livetime	Events
GFU	7.5 years	1.5 million
[IC (2017) Astropart. Phys. 92 30]		


Analysis Method

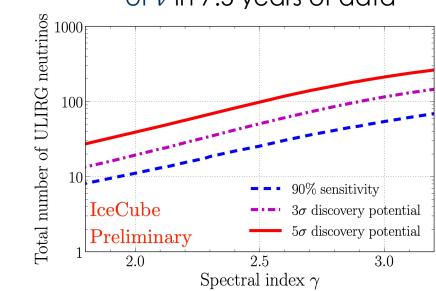
- Maximum likelihood analysis
 - Time-integrated unbinned likelihood
 - ► Fit for
 - Number of signal events n_s
 - Power-law spectral index γ

Stack sources to enhance sensitivity Weigh ULIRGs according to total IR flux

Sensitivity & Discovery Potentials



Test analysis performance Simulate pseudo-signal according to


 $\Phi_{\nu_{\mu}+\overline{\nu}_{\mu}}(E_{\nu}) = \Phi_0 \left(\frac{E_{\nu}}{E_0}\right)^{-\gamma}$

Sensitive to 10–100 ULIRG neutrinos

- More sensitive to harder spectra
- Easier to distinguish from atm. background

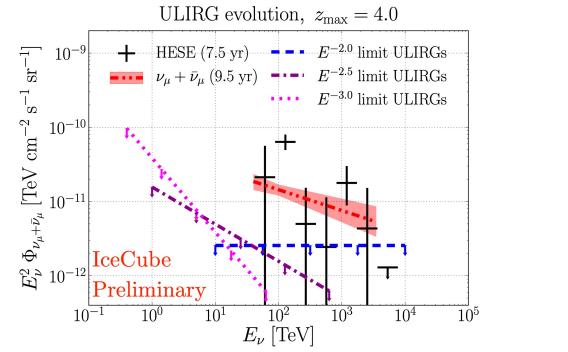
Results & Upper Limits

Limits equal to sensitivity (90% CL)

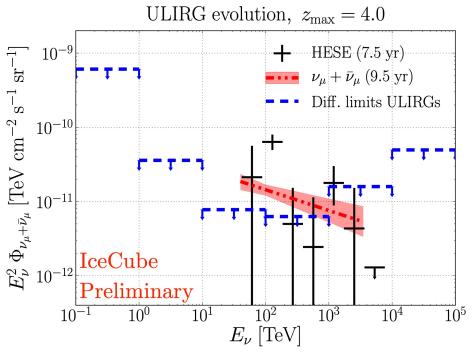
Analysis consistent with background hypothesis

Extrapolate to limits on full ULIRG source population

• Set upper limits on flux from our 75 ULIRGs ($z \le 0.13$)

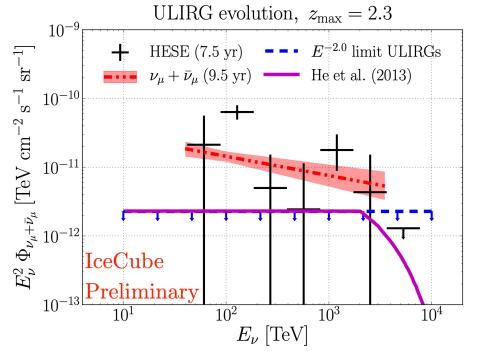


- Results n_s 0 γ —p-value1.0
- $E_0 = 10 \text{ TeV}$ flux of all ULIRGs up to z = 0.13flux of all ULIRGs up to $z = z_{max}$ $[TeV cm^{-2} s]$ $\Phi_{\nu_{\mu}+\overline{\nu}_{\mu}}^{z \leq z_{\max}} = \frac{\zeta_{z=z_{\max}}}{\xi_{z=0.13}} \Phi_{\nu_{\mu}+\overline{\nu}_{\mu}}^{z \leq 0.13}$ 10^{-11} $E_0^2 \Phi_{
 u_\mu + ar{
 u}_\mu}(E_0) = 0^{-1}$ integrate over redshift $\mathcal{H}(z) = \begin{cases} (1+z)^4 & z \le 1\\ \text{flat} & z > 1 \end{cases}$ 90% sensitivity IceCube 3σ discovery potential **ULIRG** redshift evolution 5σ discovery potential Preliminary Vereecken+ (2020) arXiv:2004.03435 10^{-15} 2.02.53.0 Spectral index γ

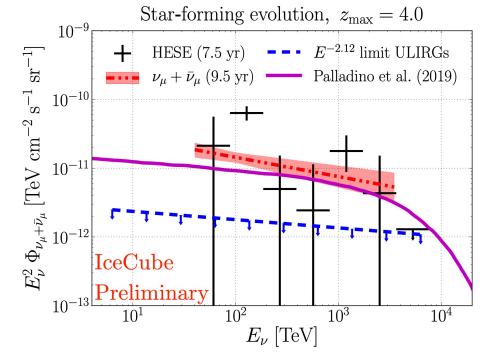

Limits on ULIRG Population

- Integral limits
- ▶ 90% central energy range
- Contribution to diffuse observations constrained for $E^{-2.0}$ and $E^{-2.5}$ spectra

- Quasi-differential limits
- $E^{-2.0}$ limit in each energy decade
- Contribution to diffuse observations constrained for 10–100 TeV and 100–1000 TeV



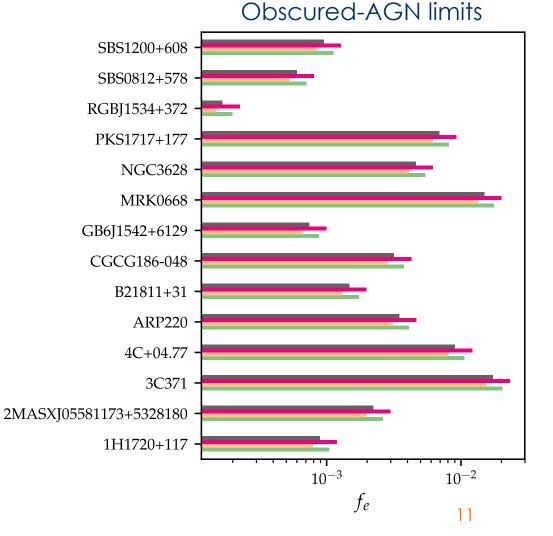
Comparison with Reservoir Models



• He+ (2013) PRD 87 063011

- Neutrino flux powered by hypernovae
- At level of our upper limit
- More data needed to exclude/validate

- ► Palladino+ (2019) JCAP 09 004
 - Generic model of hadronically powered gamma-ray galaxies (HAGS)
 - ULIRGs excluded as sole HAGS responsible for diffuse observations

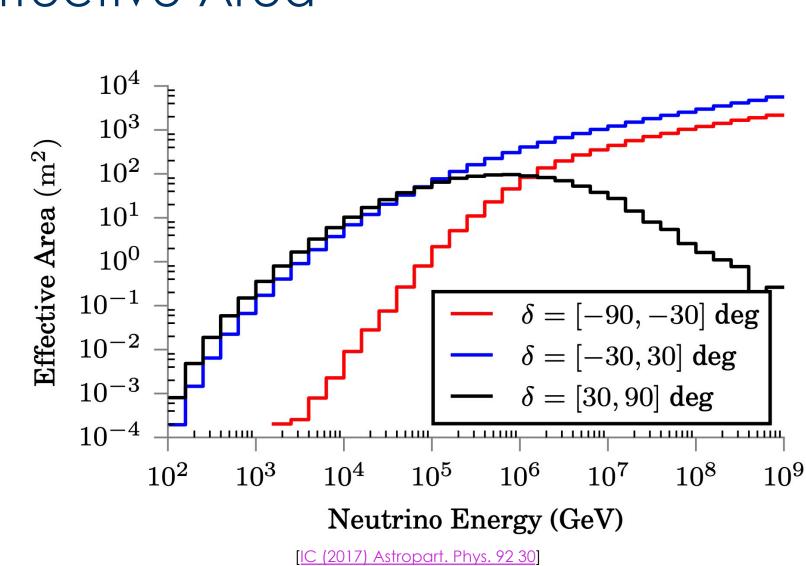


Comparison with Beam-Dump Model

- Vereecken+ (2020) arXiv:2004.03435
- Compton-thick AGN beam dump
- Set lower limit on parameter $f_e = L_e/L_p$
- Fit model to our $E^{-2.0}$ ULIRG limit
- Order of magnitude estimation
- Consistent with previous limits on obscured AGN
 [Pos ICRC2017 1000]

Conclusions & Outlook

Summary


- Performed IceCube stacking search for neutrinos from ULIRGs
- No astrophysical signal identified
- Set upper limits on ULIRG source population
- Constrained model predictions
- Paper submitted: <u>arXiv:2107.03149</u>

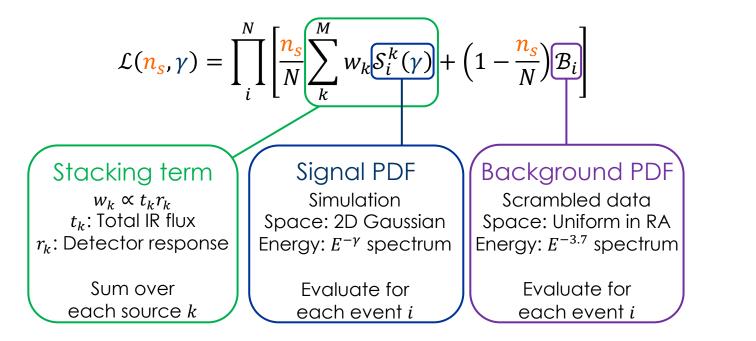
Outlook

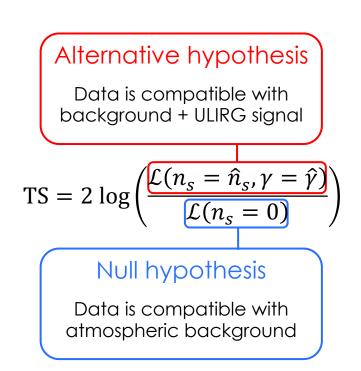
- Consider LIRGs as candidate neutrino sources
 - Less luminous: $L_{IR} \ge 10^{11} L_{\odot}$
 - More numerous: 10–50 higher IR lum. density
- Consider Compton-thick AGN as candidate neutrino sources
- Possible gamma-ray dim neutrino sources
- ► Work in progress, see PoS ICRC2021 1142

BACKUP

GFU Effective Area

Maximum-Likelihood Method


Construct likelihood


► Fit for

- Number of signal events n_s (get best fit \hat{n}_s)
- Power-law spectral index γ (get best fit $\hat{\gamma}$)

- Perform hypothesis test
- Background-only TS PDF from data scrambles
- Use to determine p-value

Redshift-Evolution Parameter

 $\xi_{z=4.0}$

3.4

2.5

1.8

2.4

1.7

1.3

0.53

0.43

0.36

$\boldsymbol{\mathcal{H}}(z) = \begin{cases} (1+z)^4 & z \le 1\\ \text{flat} & z > 1 \end{cases}$	ULIRG	2.0	
		2.5	
		3.0	
$\mathcal{H}(z) = \begin{cases} (1+z)^{3.4} & z \le 1\\ (1+z)^{-0.3} & z > 1 \end{cases}$	Star-formation rate	2.0	
		2.5	
		3.0	
		2.0	
$\mathcal{H}(z) = 1$	Flat	2.5	

Evolution

Spectral index γ

3.0

$$\xi_z(\gamma) = \int_0^z \frac{\mathcal{H}(z')(1+z')^{-\gamma}}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}} dz'$$

 $\xi_{z=0.13}$

0.14

0.14

0.13

0.14

0.13

0.13

0.11

0.11

0.11

 $\xi_{z=2.3}$

3.0

2.2

1.7

2.2

1.6

1.2

0.49

0.41

0.35

Vereecken+ (2020) arXiv:2004.03435