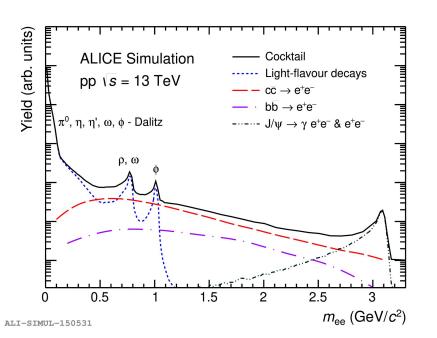


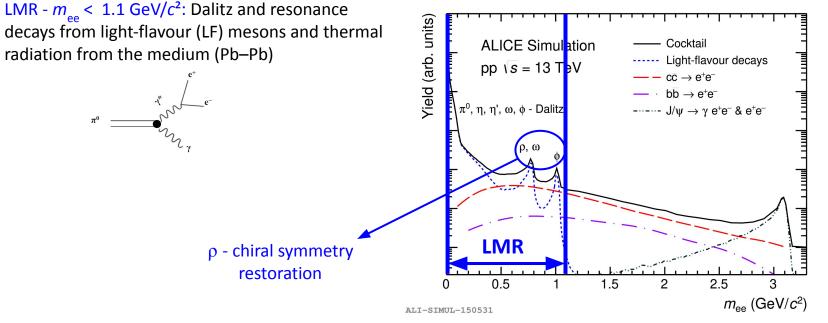
Low-mass dielectron measurements with ALICE at the LHC


Hermann Degenhardt High Energy Physics and Instrumentation Center Universidade de São Paulo - Brazil on behalf of the ALICE Collaboration

29/07/2021

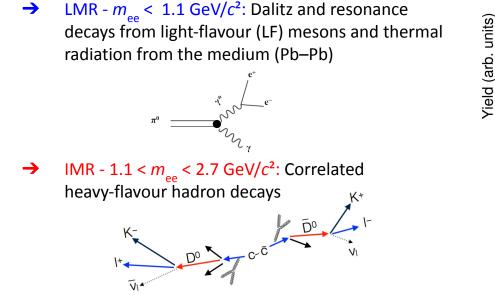
Why dielectrons?

- → Dileptons are a rich source of physical information in all collision systems
 - ⇒ pp: baseline measurements and high-multiplicity phenomena
 - ⇒ p-Pb: cold nuclear matter effects measurements
 - \Rightarrow Pb–Pb: QGP insights
- → They are produced during all stages from different sources and present negligible final-state interactions
 - ⇒ Allowing to access the whole history of the system created in each type of collision
- → Unique probes of the system

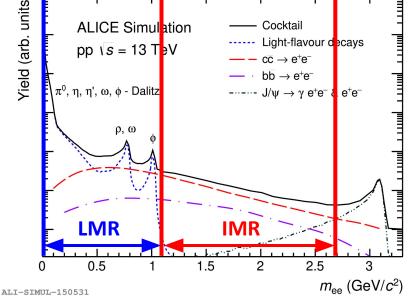


 \rightarrow

29/07/2021


Low-mass dielectron measurements with ALICE - Hermann Degenhardt (USP)

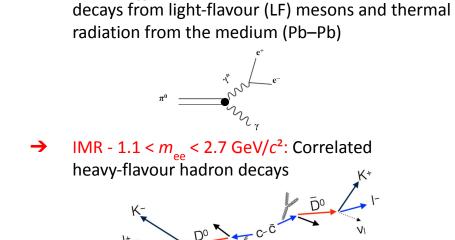
29/07/2021


 \rightarrow

Low-mass dielectron measurements with ALICE - Hermann Degenhardt (USP)

Dielectrons sources

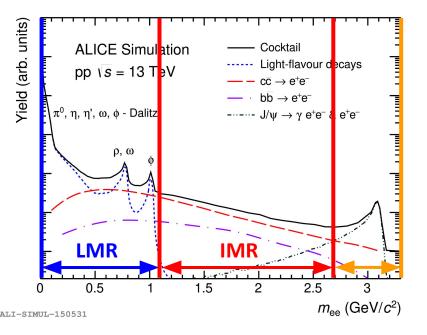
Extraction of HF cross sections: $\sigma_{c\bar{c}}$ and $\sigma_{b\bar{b}}$


29/07/2021

 \rightarrow

 \rightarrow

Low-mass dielectron measurements with ALICE - Hermann Degenhardt (USP)


Dielectrons sources

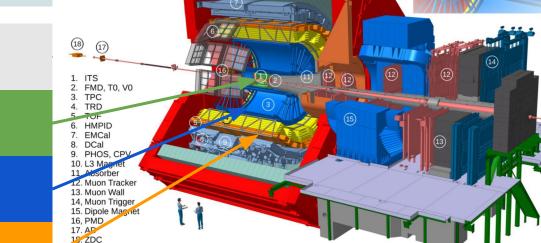
J/ Ψ mass region - 2.7 < $m_{\mu\rho}$ < 3.3 GeV/ c^2

LMR - m_{oo} < 1.1 GeV/ c^2 : Dalitz and resonance

5

The ALICE experiment

- Dielectrons measured at midrapidity
- In this talk: pp, p–Pb and Pb–Pb at 5 TeV and soft dielectron production in pp at 13 TeV


V0 scintillators

Trigger and centrality estimator

Inner Tracking System (ITS) Tracking, vertexing and PID (dE/dx)

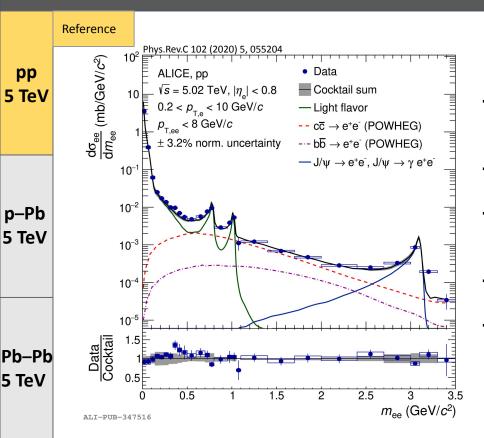
Time Projection Chamber (TPC) Tracking and PID (d*E*/dx)

Time-Of-Flight (TOF) Tracking and PID (TOF measurement)

.....

a. ITS SPD (Pixel)

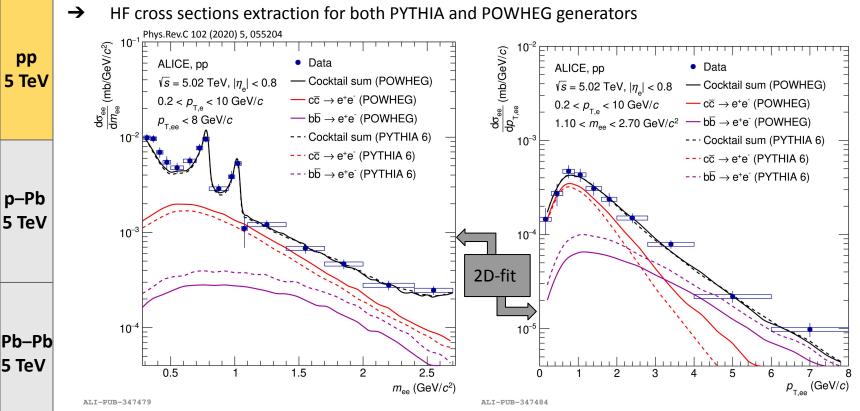
b. ITS SDD (Drift) c. ITS SSD (Strip)


d. V0 and T0 e. FMD

29/07/2021

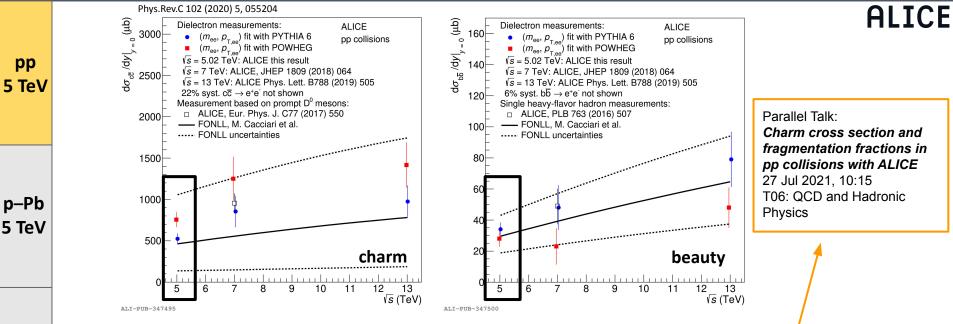
Low-mass dielectron measurements with ALICE - Hermann Degenhardt (USP)

19. ACORDE


Dielectron production in pp at 5.02 TeV

- → Dielectron production in pp collisions is fully described by hadronic sources
- → LF and J/ Ψ from parameterized measurements
- → HF normalized by the cross sections extracted from 2D fits of m_{ee} and $p_{T,ee}$
- → Serves as baseline for p–Pb and Pb–Pb collisions
- → Similar results for other collision energies, and for both PYTHIA and POWHEG generators

HF cross sections via dielectron

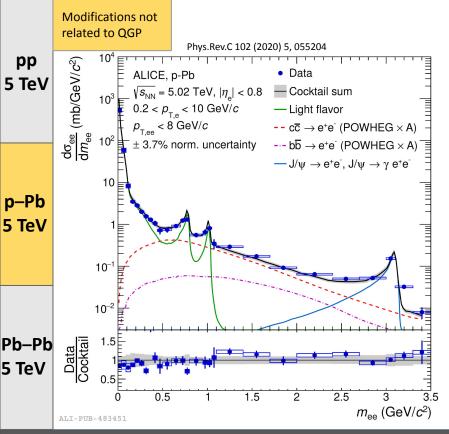


ALICE

29/07/2021

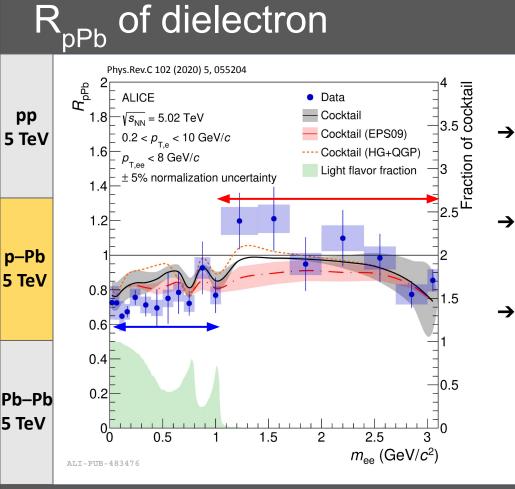
Low-mass dielectron measurements with ALICE - Hermann Degenhardt (USP)

HF cross sections at different energies



- → Extracted HF cross sections depend on the event generator
- → Similar results from measurements in different energies of pp collisions
- → Energy dependence described by FONLL within large model uncertainty
- → Measurements will be updated by the new ALICE results showing larger baryon fraction than assumed

Pb–Pb

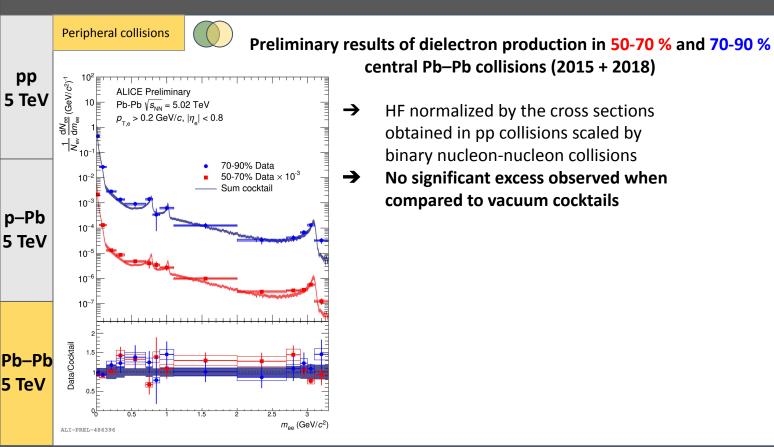

5 TeV

Dielectron production in p–Pb at 5.02 TeV

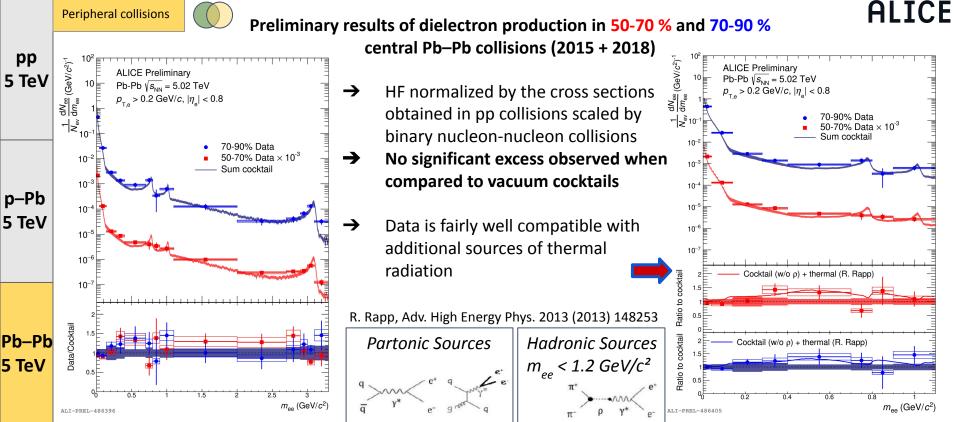
- → LF and J/ Ψ from parameterized measurements
- → HF normalized by the cross sections extracted from 2D fits of m_{ee} and $p_{T,ee}$ in pp collisions scaled by atomic mass number (A)
- → No significant deviation from vacuum expectation
- → Possible data-to-data comparison to pp collisions

ALICE

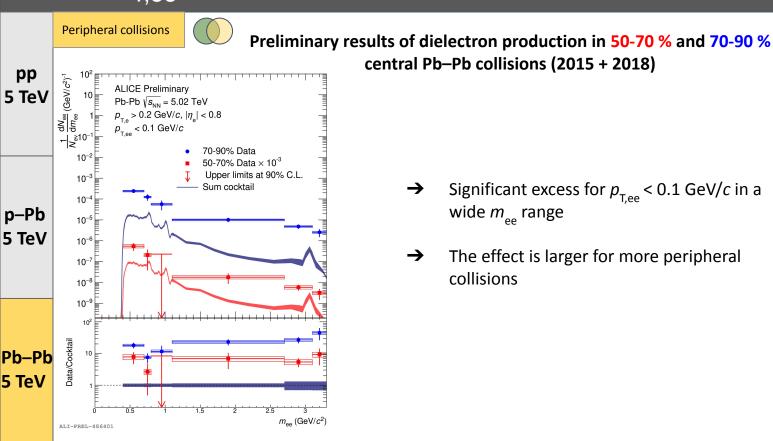
- Nuclear modification factor R $_{
 m pPb}$: $R_{pPb}(m_{ee}) = rac{1}{A} rac{d\sigma_{ee}^{pPb}/dm_{ee}}{d\sigma_{ee}^{pp}/dm_{ee}}$
- → LF (m_{ee} < 1 GeV/c²) and HF (m_{ee} > 1 GeV/c²) present different scaling behaviours dependence of the LF fraction


→ Theory calculations compatible with both models:

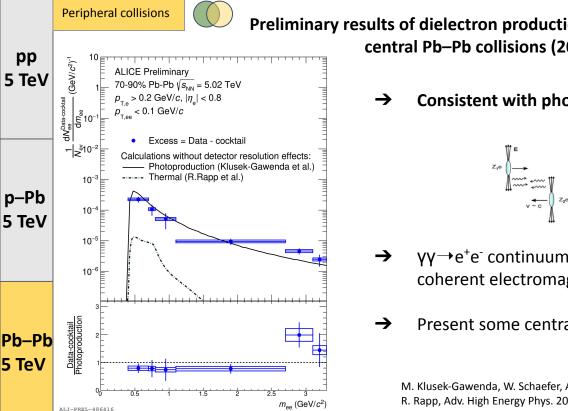
- ⇒ charm shadowing (EPS09) disfavoured in IMR
- ⇒ thermal radiation (HG+QGP) disfavoured in $m_{aa} < 0.5 \text{ GeV}/c^2$
- ⇒ Important to separate thermal radiation from HF in the IMR


Dielectron production in peripheral Pb–Pb collisions at 5.02 TeV

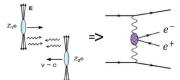
Dielectron production in peripheral Pb–Pb collisions at 5.02 TeV



29/07/2021


Low-mass dielectron measurements with ALICE - Hermann Degenhardt (USP)

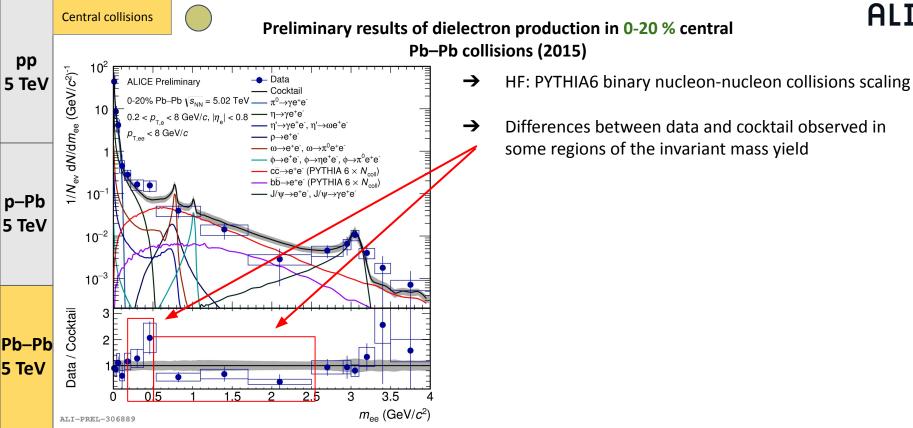
Low- $p_{T,ee}$ dielectron excess in peripheral collisions



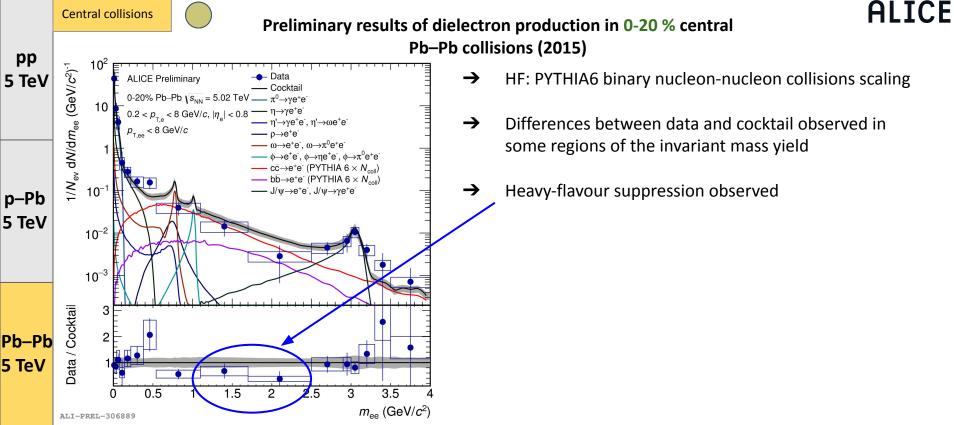
Low- $p_{T,ee}$ dielectron excess in peripheral collisions

Preliminary results of dielectron production in 50-70 % and 70-90 % central Pb–Pb collisions (2015 + 2018)

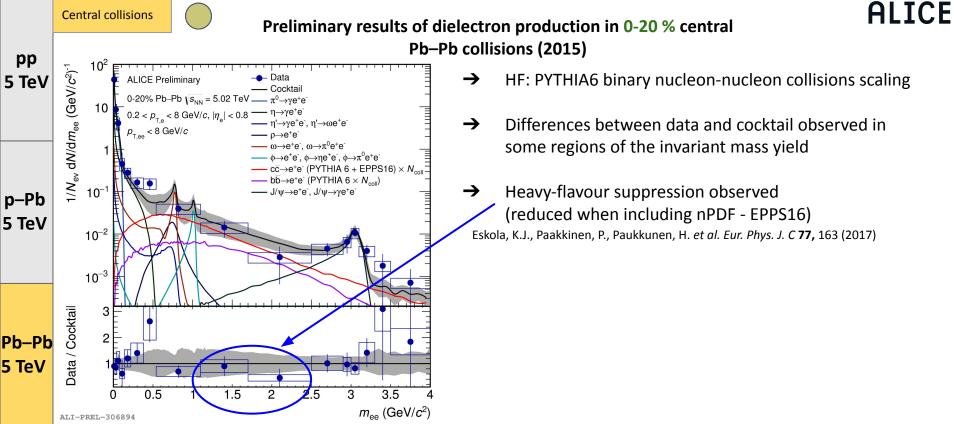
Consistent with photoproduction calculations

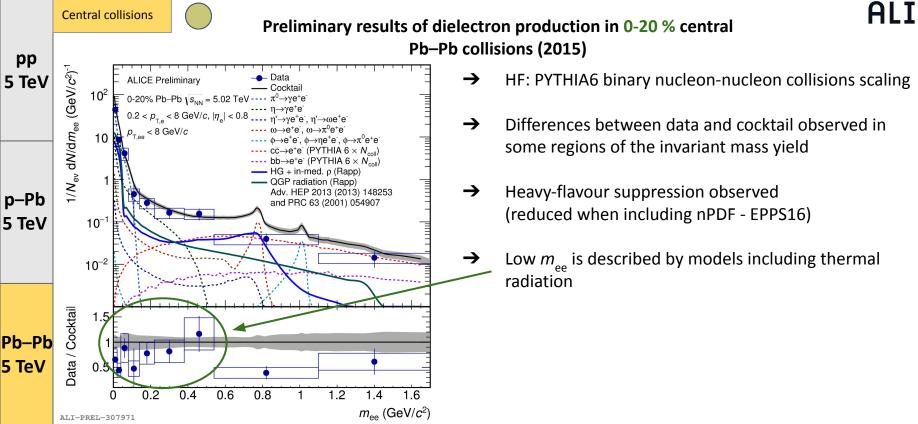


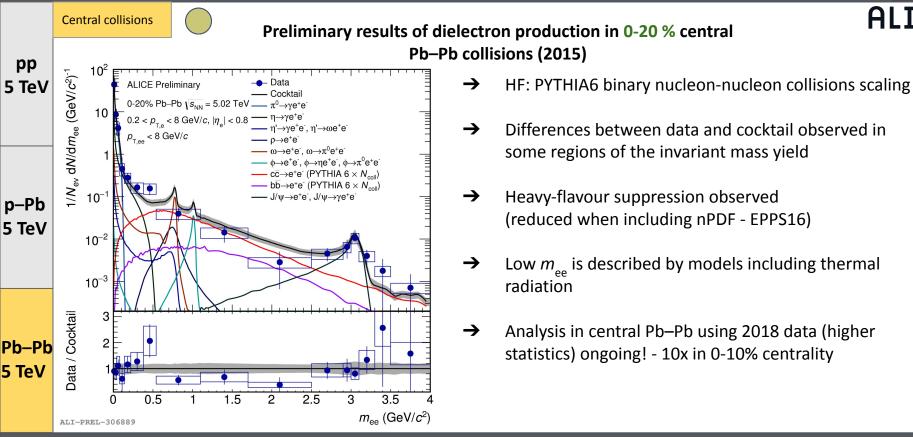
- $\gamma \gamma \rightarrow e^+e^-$ continuum in m_{a} scaling with Z^4 from coherent electromagnetic field of the colliding nuclei
 - Present some centrality dependence


M. Klusek-Gawenda, W. Schaefer, A. Szczurek, PLB 814 (2021) 136114 R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253

29/07/2021

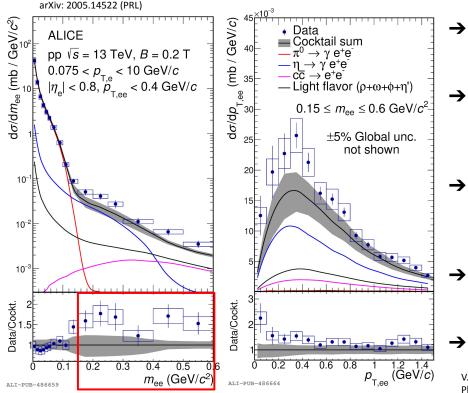






Low-mass dielectron measurements with ALICE - Hermann Degenhardt (USP)

Dielectron production in central Pb–Pb collisions

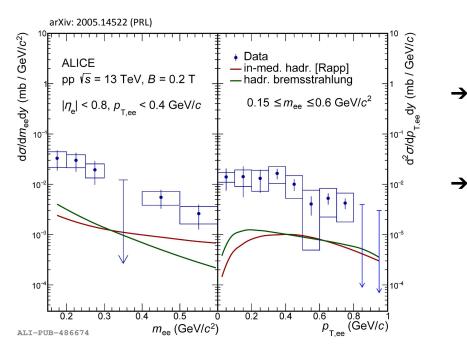

29/07/2021

20

Soft dielectron production in pp at 13 TeV

- Anomalous soft-dilepton and -photon excess already reported by other experiments
- Special data taking with reduced magnetic field of 0.2 T in ALICE allows to access electrons with $p_{T_{a}}$ down to 0.075 GeV/c for this purpose
- Cocktail underpredicts data by a factor of 1.61 ± 0.13 (stat.) \pm 0.17 (syst.) \pm 0.34 (cocktail) in:
 - \Rightarrow
 - $p_{_{
 m T,ee}} < 0.4 \; {
 m GeV}/c$ 0.15 < $m_{_{
 m ee}} < 0.6 \; {
 m GeV}/c^2$ ⇒
- No excess observed in different regions as lower m_{00} or higher $p_{T,ee}$

No multiplicity dependence observed


V. Hedberg PhD thesis, Lund (1987); DLS Collaboration, Phys. Rev. Lett. 61 (1988) 1069-1072; M.R.Adams et al. Phys. Rev. D27 (1983) 1977-1998; K.J. Anderson et al. Phys. Rev. Lett. 37 (1976) 700-802; A.Belogianni et al. Phys.Lett.B548 n 3 (2002) 122-128, 129-130; J.Antos et al. Z. Phys. C59 (1993) 547-554

29/07/2021

Low-mass dielectron measurements with ALICE - Hermann Degenhardt (USP)

Soft dielectron production in pp at 13 TeV

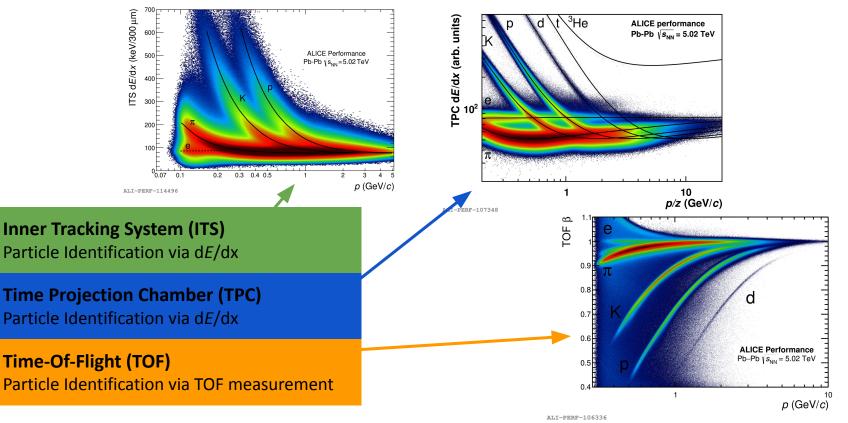
- Excess yield cannot be reproduced by calculations of initialand final-state hadrons bremsstrahlung or by thermal dielectron production predictions
- Possible mechanism:
 - ⇒ The radiation comes from a back-reaction of the vacuum to a non-perturbative back-to-back qq pair (charge oscillation arising from leading quarks ripping meson-like fermions from the Dirac sea)
 - ⇒ Strong non-perturbative phenomena only seen with e^+e^- or γ

O. Garcia-Montero, ArXiv:2104.07050v1; D. E. Kharzeev and F. Loshaj, Phys. Rev. D89, 074053(2014), arXiv:1308.2716

Summary

pp 5 TeV		Reference measurement for p-Pb and Pb-Pb Charm and beauty cross sections measured	ICE
p–Pb 5 TeV	\rightarrow \rightarrow	No significant modification of heavy-flavour production Separation of dielectron sources and multiplicity studies ongoing	
Pb–Pb 5 TeV	\rightarrow	No significant excess observed compared to vacuum cocktails for $p_{T,e} > 0.2 \text{ GeV}/c$ in peripheral collision Low- $p_{T,ee}$ excess compatible with coherent photoproduction in peripheral collisions Possible excess from thermal radiation in low m_{ee} in central collisions Heavy-flavour suppression in central collisions	ons
pp 13TeV	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Significant excess in soft dielectron production Current theoretical models can not reproduce the excess, although recent calculations aim to No significant multiplicity dependence	
Outlook	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}$	ITS and TPC upgrade for Run 3 and Run 4: Improved resolution, faster readout, continuous readout Better vertex pointing resolution - Better separation of HF from prompt sources via DCA Higher acquisition rate: gain by a factor 100 in Pb–Pb statistics in Run 3 and Run 4	
	29/07/202	1 Low-mass dielectron measurements with ALICE - Hermann Degenhardt (USP)	23

Summary



pp 5 TeV	\rightarrow \rightarrow	Reference measurement Charm and beauty cross	ALICE		
p–Pb 5 TeV	\rightarrow \rightarrow	No significant modificati Separation of dielectron	 First results of the newly installed, MAPS based, ALICE Inner Tracking System - 26 Jul 2021, 10:30 Preparation for ALICE data processing and analysis in LHC Run 3 - 28 Jul 2021, 10:00 Future upgrades of ALICE for Run 4 - 29 Jul 2021, 10:00 		
Pb–Pb 5 TeV	$\bigcirc \stackrel{\rightarrow}{\rightarrow} \\ \bigcirc \stackrel{\rightarrow}{\rightarrow} \\ \stackrel{\rightarrow}{\rightarrow} \\ \rightarrow \\$	No significant excess ob Low-p _{T,ee} excess compat Possible excess from the Heavy-flavour suppressi		p _{ī,e} > 0.2 GeV/ <i>c</i> in peripheral collisions ripheral collisions ons	
pp 13TeV	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Significant excess in soft dielectron product Current theoretical models can not reproduce the excess, although recent calculations aim to No significant multiplicity dependence			
Outlook	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}$	→ Better vertex pointing resolution - Better separation of HF from prompt sources via DCA			
	29/07/202	1 Low-mass die	lectron measurements with ALICE - Herm	ann Degenhardt (USP) 24	

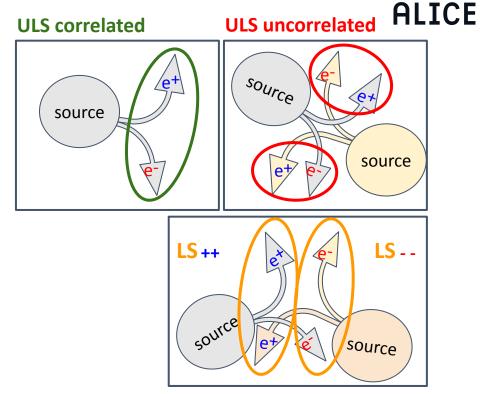
Thank you!

Electron identification

29/07/2021

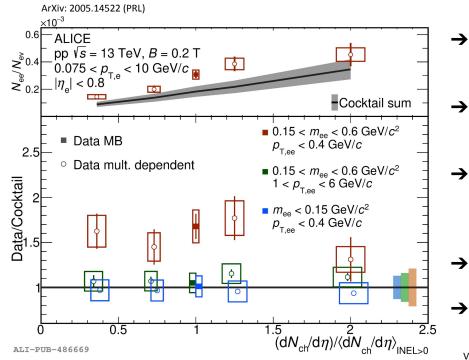
Low-mass dielectron measurements with ALICE - Hermann Degenhardt (USP)

Dielectron signal



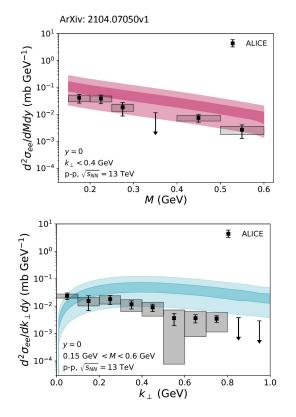
- → Electrons are separated as like-sign (LS) and unlike-sign (ULS) charged pairs
- → ULS carries both correlated (signal) and uncorrelated (background - combinatorial effect of the method) physical information
- → LS carries uncorrelated (mostly) physical information
- → The dielectron signal is obtained by the subtraction of the identified background (LS) from the ULS pairs:

$$Signal = ULS - R \cdot \sqrt{N_{++} \cdot N_{--}}$$


Additional factor to take into account acceptance differences between different LS charged pairs

29/07/2021

Soft dielectron production in pp at 13 TeV



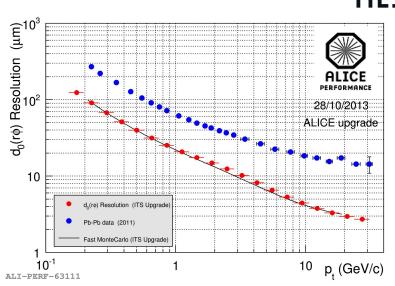
- Anomalous soft-dilepton and -photon excess already reported by other experiments
- Low magnetic field of 0.2 T in ALICE allows to access electrons with $p_{T,e}$ down to 0.075 GeV/*c* for this purpose
- Cocktail underpredicts data by a factor of 1.6 in:
 - $\begin{array}{l} \Rightarrow \quad p_{\rm T,ee} < 0.4 \; {\rm GeV}/c \\ \Rightarrow \quad 0.15 < m_{\rm ee} < 0.6 \; {\rm GeV}/c^2 \end{array}$
- No multiplicity dependence observed
- No excess observed in different regions as lower $m_{_{\rm ee}}$ or higher $p_{_{\rm T,ee}}$

V. Hedberg PhD thesis, Lund (1987); DLS Collaboration, Phys. Rev. Lett. 61 (1988) 1069-1072; M.R.Adams *et al.* Phys. Rev. D27 (1983) 1977-1998; K.J. Anderson *et al.* Phys. Rev. Lett. 37 (1976) 700-802; A.Belogianni *et al.* Phys.Lett.B548 n 3 (2002) 122-128, 129-130; J.Antos *et al.* Z. Phys. C59 (1993) 547-554

Soft dielectron production in pp at 13 TeV

- → Qualitative study by now, lacking the quark mass limiting lighter quarks calculations
- → Recently calculated possible mechanism:
 - ⇒ The radiation comes from a back-reaction of the vacuum to a non-perturbative back-to-back qq pair, triggering meson-like excitations that couples to photons
 - ⇒ Charge oscillation arising from leading quarks ripping meson-like fermions from the Dirac sea

- Proposed Model: D. E. Kharzeev and F. Loshaj, Phys. Rev. D89, 074053(2014), arXiv:1308.2716
- Calculation by: O. Garcia-Montero, ArXiv:2104.07050v1


29/07/2021

Outlook

- → ITS and TPC upgrade for Run 3 and Run 4
- → Improved resolution, faster readout
- → New readout chambers (GEM's and SAMPA), continuous readout
- → Better vertex pointing resolution
 - \Rightarrow Allowing to access electrons with smaller p_{τ}
 - ⇒ Better separation of HF from prompt sources via DCA
- → Higher acquisition rate
 - ⇒ Drastically increasing the luminosity

Parallel Talks (T12: Detector R&D and Data Handling):

- First results of the newly installed, MAPS based, ALICE Inner Tracking System 26 Jul 2021, 10:30
- Preparation for ALICE data processing and analysis in LHC Run 3 28 Jul 2021, 10:00
- Future upgrades of ALICE for Run 4 29 Jul 2021, 10:00
- ALICE 3 29 Jul 2021, 11:15

