

Contribution ID: 573

Type: Poster

Understanding baryon and strangeness production using two-particle angular correlations in pp collisions from ALICE

Correlations between identified particles produced in high-energy nuclear collisions provide a wealth of information about hadronization mechanisms and the evolution of the system. New correlation measurements between long-lived particles (including π , K, p, Λ , Ξ) are used to investigate the particle production and the species dependence of (mini)jet fragmentation. The string/rope model predicts that strangeness is produced in ss pair breaking, therefore, correlations between strange and anti-strange hadrons are expected, and studies of these correlations can provide information on strangeness production mechanisms. In this talk we present measurements of $\Xi - \pi$, $\Xi - K$, $\Xi - p$, $\Xi - \Lambda$, and $\Xi - \Xi$ angular correlations in pp collisions at $\sqrt{s} = 13$ TeV as a function of multiplicity, and discuss the implications for this unique probe on the understanding of strangeness production mechanisms. Furthermore, in previous measurements in pp collisions at $\sqrt{s} = 7$ TeV we observed that correlations between baryons show qualitatively different behavior than those of mesons, and the origin of this difference is still unknown. We will show new results on π , K, p, and Λ correlations from $\sqrt{s} = 13$ TeV pp collisions, which present a challenge to the contemporary models of particle production in elementary systems.

Collaboration / Activity

ALICE

First author

Email

Primary authors: COLLABORATION, ALICE; JANIK, Malgorzata; JANIK, Malgorzata (Warsaw University of Technology, WUT)

Presenters: JANIK, Malgorzata; JANIK, Malgorzata (Warsaw University of Technology, WUT)

Session Classification: T06: QCD and Hadronic Physics

Track Classification: QCD and Hadronic Physics