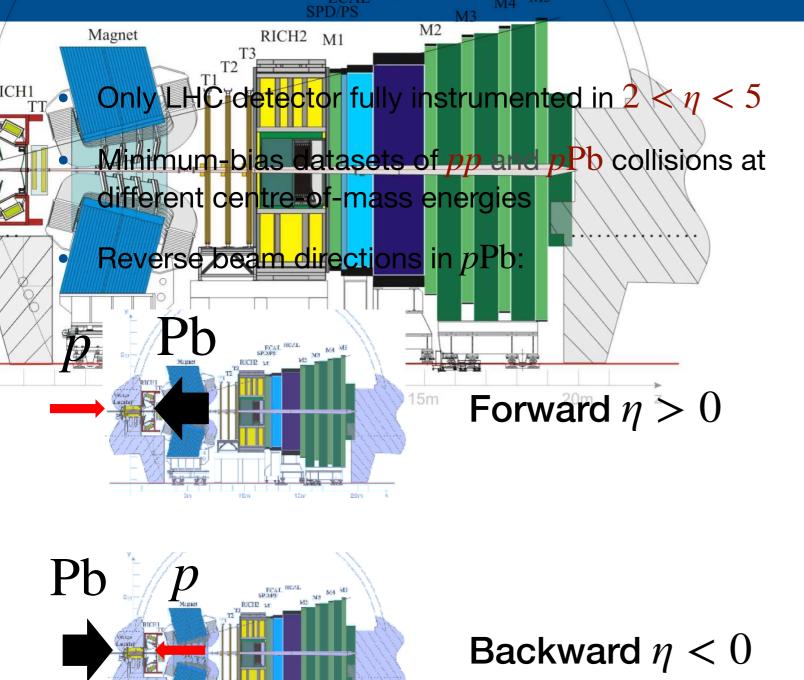


Charged hadron production at **LHCb**

Oscar Boente García on behalf of the LHCb collaboration 28/07/2021 **EPS-HEP**

> Instituto Galego de Física de Altas Enerxías - USC Contact: oscar.boente@usc.es



The LHCb detector

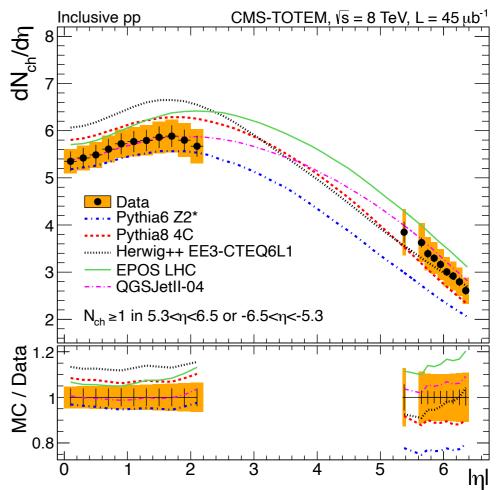
ALICE ATLAS+LHCt CMS+CASTOR+TOTEM LHCb+HeRSCheL

Boost of nucleon-nucleon cms system: $\eta = \eta_{lab} - 0.465$

Figure from <u>arXiv:2105.06148v1</u>

Results for today

- Prompt charged particle production in pp collisions at 13 TeV
 - → arXiv:2107.10090, LHCb-PAPER-2021-010


- Prompt charged particle production in $p\mathrm{Pb}$ and pp collisions at $5\,\mathrm{TeV}$
 - → LHCb-PAPER-2021-015 (in preparation)

Motivation

EPJC 74 (2014) 2053

- Description of hadron production in pp and pA collisions
 - * Most production driven by non-perturbative soft-QCD interactions: hadronisation, DPS, ...
 - * Predictions of Monte-Carlo generators largely disagree in LHCb acceptance
 - * Impact in cosmic-ray physics, could explain currently observed excess in muons in hadronic cascades of high-energy cosmic rays (arXiv:2105.06148v1)

Phenomenology of heavy-ion collisions

- * Charged hadron production in pA collisions influenced by cold nuclear matter effects
- * Baseline to study AA collisions and quark gluon plasma effects
- \star For high p_{T} charged particles, pQCD predictions are possible
 - Description of shadowing/antishadowing in nuclear PDFs (nPDFs)
 - Influence of gluon saturation in the low *x* regime

Prompt charged particle production in pp at 13 TeV

arXiv:2107.10090

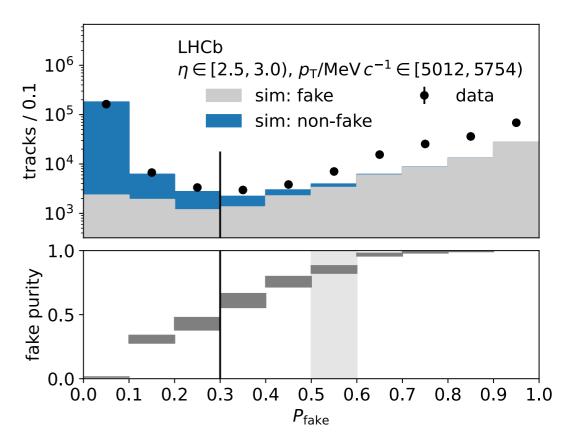
$$\frac{d^2\sigma}{dp_{\rm T}d\eta} = \frac{1}{\mathscr{L}} \cdot \frac{n}{\Delta p_{\rm T}\Delta \eta}$$
 n : prompt charge $\Delta \eta, \Delta p_{\rm T}$: bin size \mathcal{L} : integrated lun

n: prompt charged particle yield

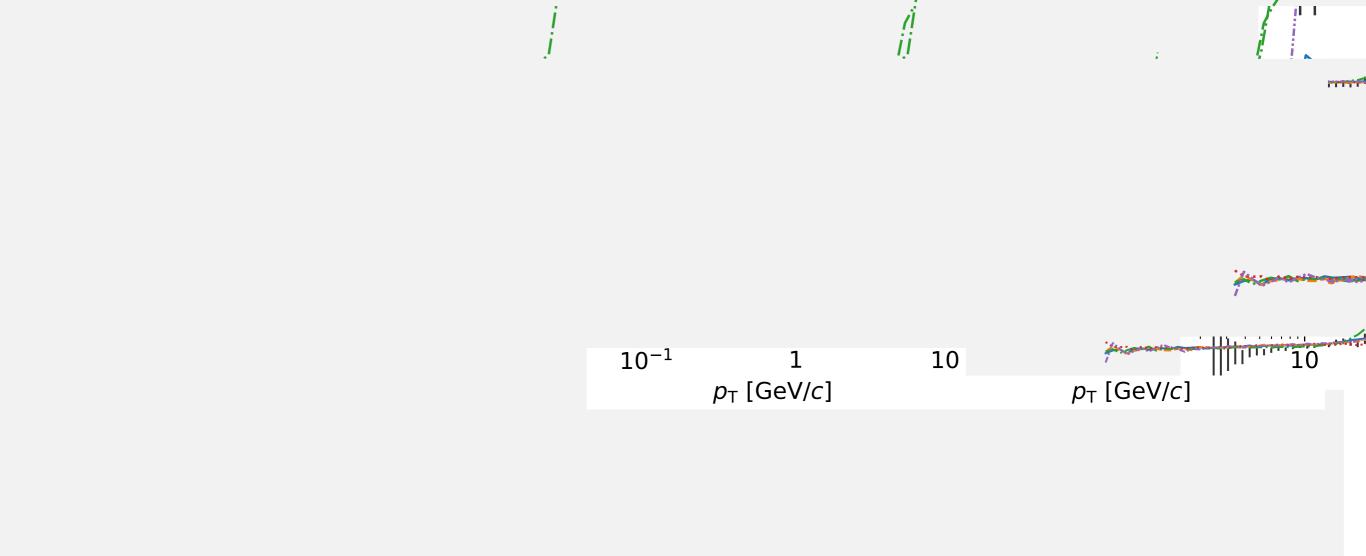
 \mathscr{L} : integrated luminosity of the dataset

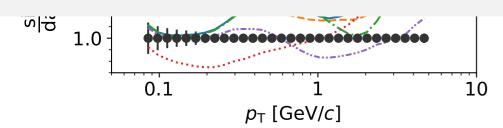
- Dataset of pp collisions at $\sqrt{s} = 13 \, \text{TeV}$ and $\mathcal{L} = 5.4 \, \text{nb}^{-1}$
- Unbiased trigger selecting leading bunch crossings
- Prompt charged particles: long-lived particles produced in primary interaction or without long-lived ancestors
- Measured from tracks in $2 < \eta < 4.8$ and $0.08 < p_T < 10 \,\mathrm{GeV}$
- Loose track selection with high efficiency
- Charged particles separated by charge

background contributions selected tracks (candidates) $n_{\text{cand}} = \varepsilon n + \sum_{i} n_{\text{backgr,i}}^{\dagger}$ total efficiency


- Fake tracks
- Secondary particles

Prompt charged particle production in pp at 13 TeV


arXiv:2107.10090


- Total efficiency from simulation and corrected with data
 - abundance of (π,K,p) extrapolated from LHCb measurement at 0.9 and $7\,\mathrm{TeV}$ EPJ C72 (2012) 2168
- Background estimated with simulation and corrected by data
 - use proxy samples of tracks enriched with background
 - proxies for fake tracks, material interactions and daughters of $\Lambda,\,\overline{\Lambda}$ and $K^0_{\rm S}$

 P_{fake} : fake track probability, obtained with NN classifier (<u>LHCb-PUB-2017-011</u>)

- Measurement dominated by systematic uncertainties:
 - Total uncertainty between $2-15\,\%$, most bins below $5\,\%$
 - Generally dominated by background estimation procedure
 - Computation of full covariance matrix for uncertainties

Prompt charged particle production in pPb, pp at 5 TeV

LHCb-PAPER-2021-015

(in preparation)

Nuclear modification factor
$$\rightarrow R_{p\mathrm{Pb}}(\eta,p_{\mathrm{T}}) = \frac{1}{A} \frac{d^2 \sigma_{p\mathrm{Pb}}(\eta,p_{\mathrm{T}})/dp_{\mathrm{T}} d\eta}{d^2 \sigma_{pp}(\eta,p_{\mathrm{T}})/dp_{\mathrm{T}} d\eta}$$
, $A = 208$

$$\frac{d^2\sigma}{dp_{\rm T}d\eta} \bigg|_{p{\rm Pb},\,pp} = \frac{1}{\mathscr{L}} \cdot \frac{N^{ch}(\eta,p_{\rm T})}{\Delta p_{\rm T}\Delta \eta}$$

 N^{ch} : prompt charged particle yield

 $\Delta\eta, \Delta p_{\mathrm{T}}$: bin size

 \mathscr{L} : integrated luminosity of the dataset

- Datasets at $\sqrt{s_{\mathrm{NN}}} = 5 \,\mathrm{TeV}$:
- Measure $R_{p\mathrm{Pb}}$ in common η range

Beam	Acceptance	Luminosity
pp	$2 < \eta < 4.8$	$3.49 \pm 0.07 \mathrm{nb^{-1}}$
pPb	$1.6 < \eta < 4.3$	$42.73 \pm 0.98 \mu\mathrm{b}^{-1}$
Pbp	$-5.2 < \eta < -2.5$	$38.71 \pm 0.97 \mu \mathrm{b}^{-1}$

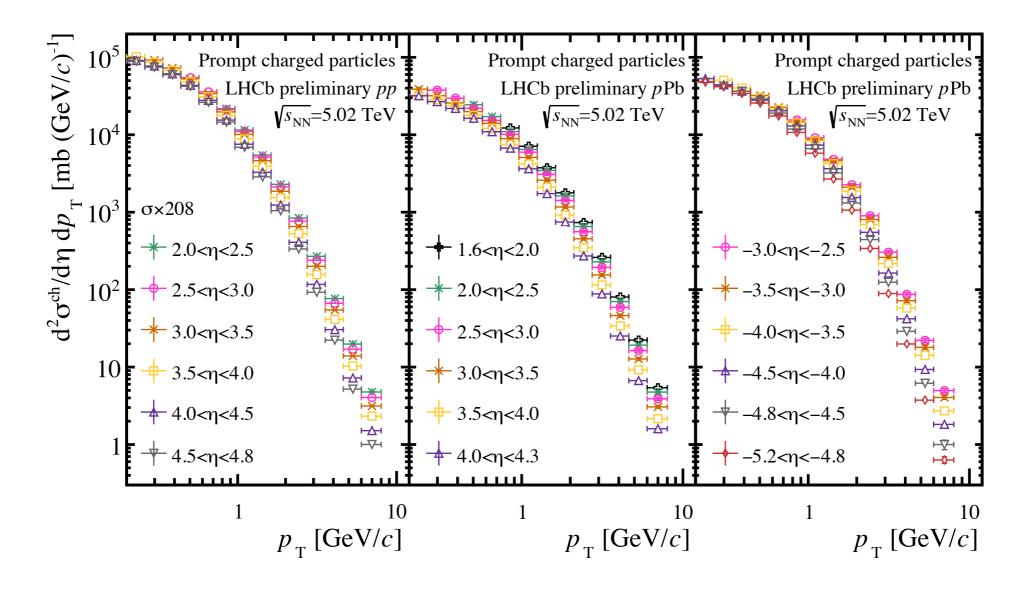
- N^{ch} measured with reconstructed tracks, covering $p > 2 \, {\rm GeV}/c$, $0.2 < p_{\rm T} < 8 \, {\rm GeV}/c$
- Events selected with minimum-bias trigger
- Reconstructed tracks corrected from background and reconstruction and selection efficiencies, measured with simulation and corrected with data

Prompt charged particle production in pPb, pp at 5 TeV

LHCb-PAPER-2021-015 (in preparation)

- Background from fake tracks specially important
 - Increases with event occupancy, large contribution in Pbp
 - Contribution rises strongly with p_{T}
- Tighter track selection than in 13 TeV analysis
- Selection efficiency measured on data using a calibration sample of $\phi(1020) o K^+K^-$ decays
- Charged particle composition not yet measured in LHCb acceptance for $pPb \rightarrow use EPOS-LHC$ simulation validated with ALICE data (Phys. Lett. B760 (2016) 720)
- Total uncertainty:
 - down to $2.8\,\%$ in $\mathrm{d}^2\sigma/\mathrm{d}\eta\mathrm{d}p_\mathrm{T}$
 - down to $4.2\,\%$ in $R_{p\mathrm{Pb}}$
- Dominated by systematic uncertainties:
 - particle composition in *pPb* for most bins
 - tracking efficiency and signal purity in boundary (η, p_{T}) bins

Uncertainty source	<i>p</i> Pb [%]	Pbp [%]	pp~[%]
Track finding efficiency	1.5-5.0	1.5-5.0	1.6-5.3
Detector occupancy	0.0-2.8	0.6 - 2.9	0.1 - 1.6
Particle composition	0.4-4.1	0.4 - 4.6	0.3 - 2.4
Selection efficiency	0.7-2.2	0.7 - 3.0	1.0 - 1.7
Purity	0.1-1.8	0.1 - 11.7	0.1 - 5.8
Truth-matching	0.0-0.1	0.0 - 0.1	0.1 - 0.2
Luminosity	$\bar{2.3}^{-}$	-2.5	2.0
Statistical uncertainty	0.0-0.6	0.0 - 1.0	0.0 - 1.1
Total (in $d^2\sigma/d\eta dp_T$)	3.0-6.7	3.3-14.5	2.8 - 8.7
Total (in R_{pPb})	4.2-9.2	4.4-16.9	

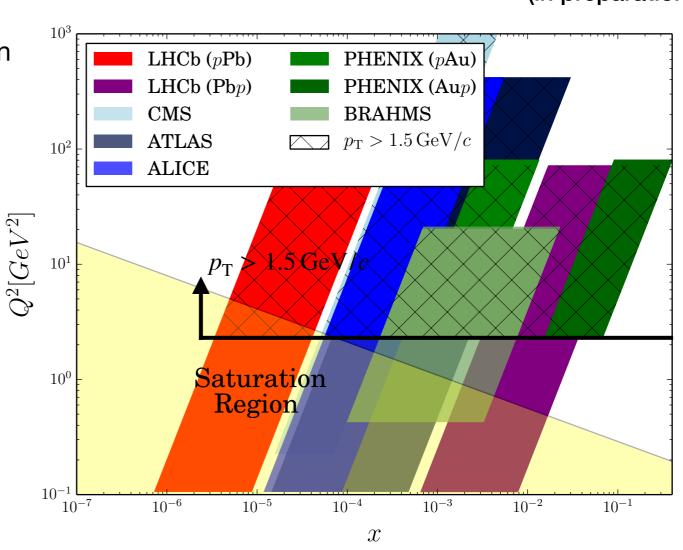

Double-differential cross-sections at 5 TeV

$$\left. \frac{d^2 \sigma}{dp_{\rm T} d\eta} \right|_{p{\rm Pb},pp} = \frac{1}{\mathscr{L}} \cdot \frac{N^{ch}(\eta,p_{\rm T})}{\Delta p_{\rm T} \Delta \eta}$$

LHCb-PAPER-2021-015 (in preparation)

- pp result consistent with measurement at $\sqrt{s}=13\,\mathrm{TeV}$ (LHCb-PAPER-2021-010)
- cross-section at $13\,\mathrm{TeV}$ from $5\,\mathrm{TeV}$ increases a factor 1-3 depending on p_T

LHCb (x, Q^2) coverage


LHCb-PAPER-2021-015 (in preparation)

- $R_{p\text{Pb}}$ probes nuclear effects
- Depends on (x, Q^2) of the probed Pb parton

 Q^2 : exchanged momentum between interacting partons x: momentum fraction of Pb parton

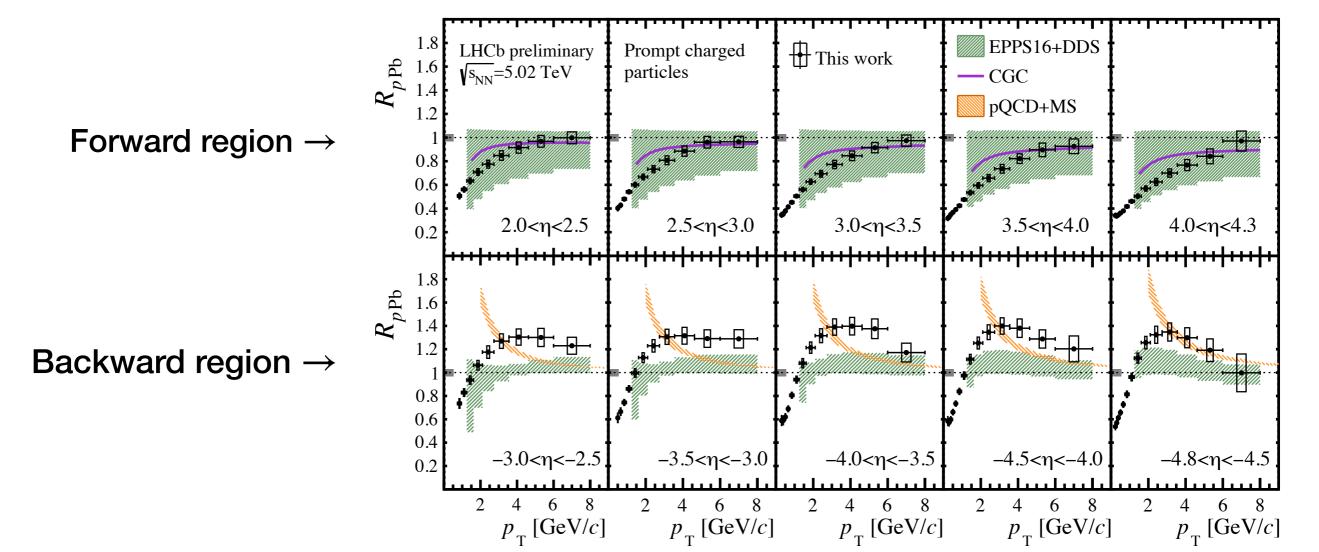
$$Q^{2} \sim m^{2} + p_{T}^{2}, \qquad x \sim \frac{Q}{\sqrt{s_{NN}}} e^{-\eta}$$

 $m = 256 \,\text{MeV}/c^{2}$

- LHCb can probe unprecedented Bjorken-*x* range:
 - forward, $10^{-6} \le x \le 10^{-4}$
 - backward, $10^{-3} \le x \le 10^{-1}$
- Possible access to saturation region in perturbative scale $p_{\rm T} > 1.5\,{\rm GeV}/c$
- Backward acceptance overlaps with (x, Q^2) at central BRAHMS (dAu) and backward PHENIX (Aup)

Saturation region: PRD59, 014017 (1998), PRL100, 022303 (2008)

$$Q_{s,Pb}^2 \approx 0.26 A^{1/3} (x_0/x)^{\lambda} \text{ GeV}^2$$
 $\lambda = 0.288$ $x_0 = 3 \cdot 10^{-4}$ $A = 208$

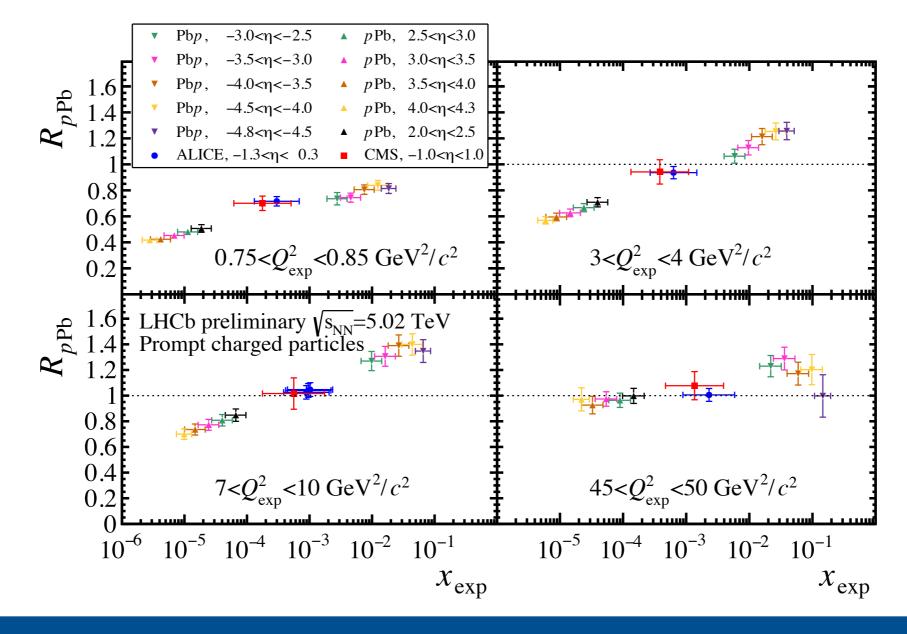

Results of R_{pPb}

LHCb-PAPER-2021-015

- **Strong suppression** at forward η , down to ~ 0.3 at low $p_{\rm T}$ and most forward rapidity (in preparation)
- Phys. Rev. C101 **Enhancement** at backward for $p_T > 1.5 \,\mathrm{GeV}/c$, as observed by PHENIX in Aup (2020) 034910
 - EPPS16+DDS: I. Helenius et. al. JHEP09(2014) 138
- **Models:**
- Color Glass Condensate (CGC): T. Lappi et. al. PR D88, 114020
- pQCD calculation with MS: Z. B. Kang et. al. (reproduced PHENIX enhancement)

PL B740(2015) 23 PR D88(2013) 054010

12


Results of $R_{p\text{Pb}}$ - dependence with (x_{exp}, Q_{exp}^2)

LHCb-PAPER-2021-015 (in preparation)

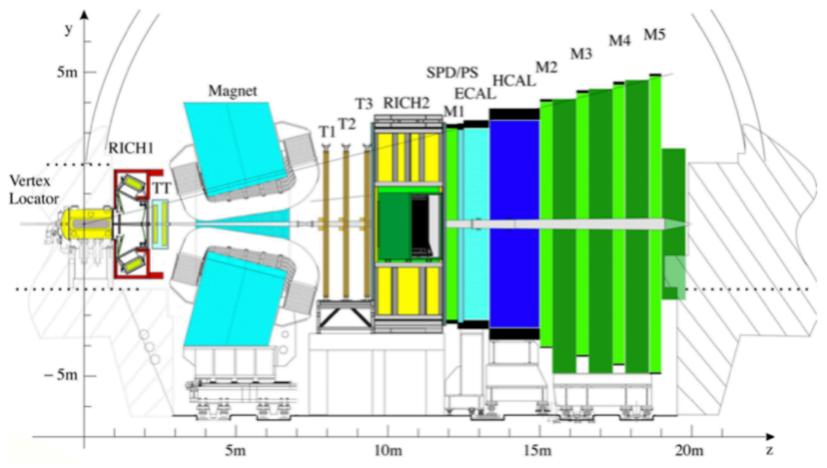
$$Q_{exp}^2 \equiv m^2 + p_{\mathrm{T}}^2$$
 and $x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{\mathrm{NN}}}} e^{-\eta}$

- experimental proxies for (x, Q^2)
- with η and $p_{\rm T}$ the center of each bin and $m=256\,{\rm MeV}/c^2$
- indirect study of the evolution of $R_{p
 m Pb}$ with x and Q^2
- Continuous evolution of $R_{p ext{Pb}}$ with x_{exp} at different Q_{exp}^2 , between forward, central and backward η regions

Conclusions

Recent results of charged particle production in pPb and pp collisions were presented

- First measurement of double-differential prompt charged particle cross-section in pp collisions in forward region at $\sqrt{s}=13\,\mathrm{TeV}$ (arXiv:2107.1009, LHCb-PAPER-2021-010)
 - Separation of negatively and positively charged particles
 - total uncertainty 2-15% , full error correlation matrix will be published
 - Crucial input for hadron production modeling in atmospheric showers in cosmic-ray physics
- First determination of R_{pPb} for prompt charged particles in forward and backward regions at LHC (LHCb-PAPER-2021-015, in preparation)
 - double-differential prompt charged particle cross-section in pp and pPb at $\sqrt{s_{\rm NN}}=5\,{\rm TeV}$
 - total uncertainty down to 4.2~% in $R_{p{
 m Pb}}$
 - Study of cold nuclear matter effects over a wide range of x
 - Strong constrains to nuclear PDFs and saturation models at intermediate and very low x
- Prospects: exploit excellent (π, K, p) PID at LHCb to measure cross-sections by species in pp and pPb collisions


Backup slides

The LHCb detector

- Forward spectrometer at LHC fully instrumented in $2 < \eta < 5$
 - Tracking system with excellent momentum resolution
 - Identification of charged hadrons (π, K, p) , neutrals (γ, π^0) , and leptons (μ, e)
- ullet Resolution of B and D decay vertices from primary collision
- Highly flexible trigger, configured to measure very low p_{T}
- Accurate luminosity determination (uncertainty $\sim 2\%$, JINST 9 (2014) 12, P12005)

LHCb <u>JINST 3 (2008) S08005</u>

LHCb performance <u>IJMPA 30 (2015) 1530022</u>

Key ideas of the analyses

- Study hadron production with inclusive prompt charged particle spectra in (η, p_{T}) bins
 - long-lived particles (lifetime < 30 ps)
 - produced in primary interaction or without long-lived ancestors
- Long-lived charged particles are: $\pi^-, K^-, p, e^-, \mu^-, \Xi^-, \Sigma^+, \Sigma^-, \Omega^-(+cc.)$
- LHCb tracking system used to detect charged particles
- Long tracks with $p > 2 \,\text{GeV}/c$

Main inputs:

- reconstruction and selection efficiencies
- background contributions
 - Fake tracks, not produced by charged particles
 - Secondary particles: particles from
 - * interactions with the detector material (e^- from γ conversions and hadrons from hadronic interactions)
 - * daughters of long-lived particles $(\Lambda^0, K_S^0, \Sigma^+ \dots)$

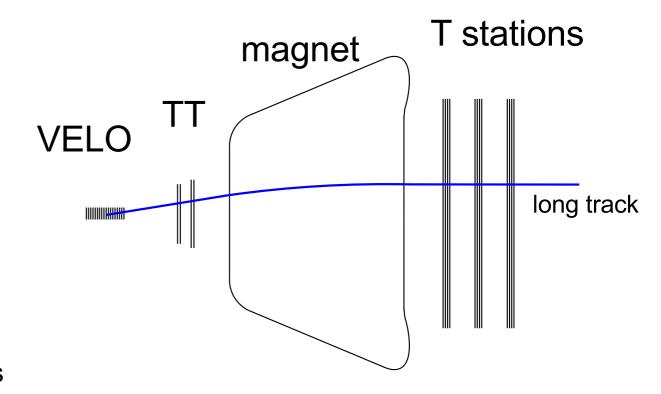
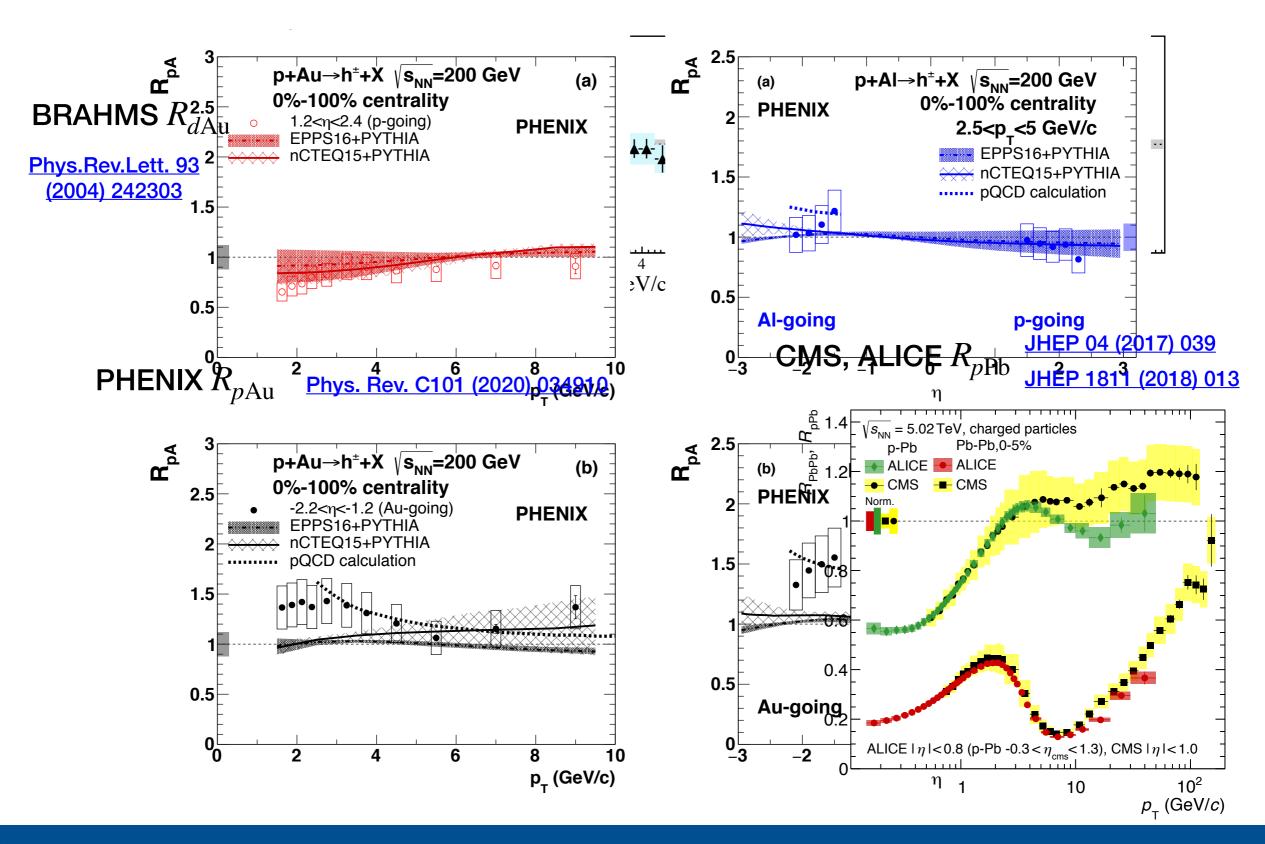
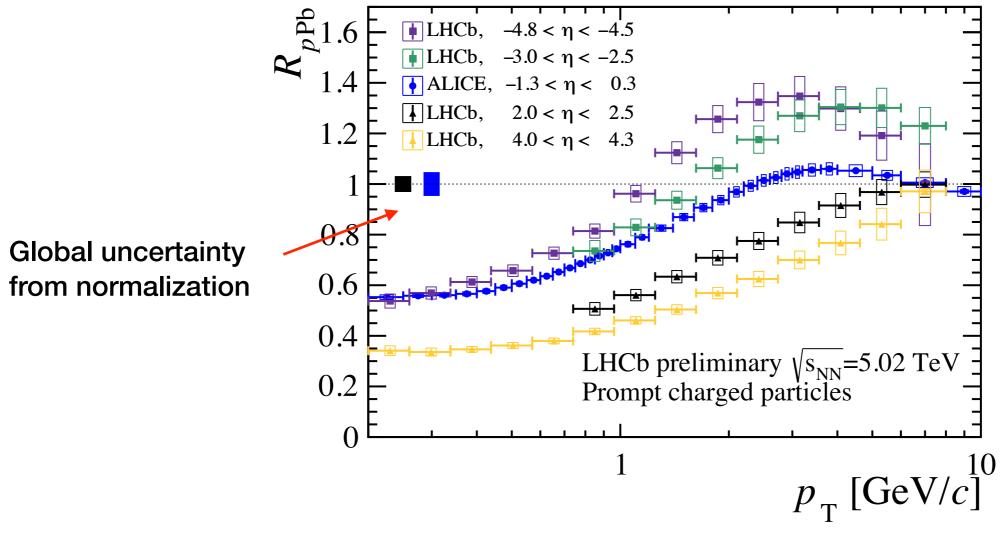



Figure from <u>JINST 10 (2015) 02, P02007</u>

Previous results of $R_{pA,dA}$



Comparison of $R_{p\text{Pb}}$ from ALICE and LHCb

• Continuous trend of $R_{p\mathrm{Pb}}$ at different η

LHCb-PAPER-2021-010 (in preparation)

ALICE: <u>JHEP 1811 (2018) 013</u>