

LHCb fixed-target results and prospects

Saverio Mariani Universita' degli studi e INFN Firenze on behalf of the LHCb collaboration

EPS-HEP, 28/07/2021, (unfortunately still) virtual

Prelude

Physics Briefing Book

CERN-ESU-004 30 September 2019

Input for the European Strategy for Particle Physics Update 2020

The multi-TeV LHC proton- and ion-beams allow for the most energetic fixed-target (LHC-FT) experiments ever performed opening the way for unique studies of the nucleon and nuclear structure at high x, of the spin content of the nucleon and of the nuclear-matter phases from a new rapidity viewpoint at seldom explored energies [117, 118].

On the high-*x* frontier, the high-*x* gluon, antiquark and heavy-quark content (e.g. charm) of the nucleon and nucleus is poorly known (especially the gluon PDF for $x \ge 0.5$). In the case of nuclei, the gluon EMC effect should be measured to understand that of the quarks. Such LHC-FT studies have strong connections to high-energy neutrino and cosmic-ray physics. The physics reach of the LHC complex can greatly be extended at a very limited cost with the

addition of an ambitious and long term LHC-FT research program. The efforts of the existing LHC experiments to implement such a programme, including specific R&D actions on the collider, deserve support.

• As stressed in the **2020 ESPP update**, the **diversity of the LHC physics reach** also relies on fixed-target experiments. At LHCb, we are pioneering this from **2015** in parallel to *pp* physics.

The LHCb experiment in its fixed-target configuration

Saverio Mariani

• Originally dedicated to *heavy flavour* physics measurements, evolving to a general-purpose experiment in $\Theta \in [10, 250] mrad$ (QCD, SM, heavy ion and fixed-target program)

 Single-arm spectrometer geometry maximizes acceptance for bb pairs, also optimal for fixed-target physics

- Same onion-like structure as all HEP experiments with tracking and particle identification sub-detectors
- Excellent momentum resolution, vertexing and PID performance
- Flexible and versatile trigger system with high efficiency and bandwidth

LHcb experiment Run2 SMOG SMOG2 upgrade The LHCb fixed-target program, SMOG

• Luminosity uncertainties reduced complementing VdM scans with Beam Gas Imaging, *ie* the reconstruction of the beam profiles with proton-gas collisions.

- SMOG (System for Measuring Overlap with Gas): gas injection in the LHC beam-pipe in ± 20 m from the nominal pp collision point
- For machine safety, only some **noble gases** with a maximum pressure of 2×10^{-7} mbar, x100 wrt the threshold LHC vacuum

- Starting from 2015, LHCb is being exploited as a fixed-target experiment too!
- Physics samples with different *cm* energies and systems collected in 2015-18

Saverio Mariani

Run2 SMOG SMOG2 upgrade SMOG physics opportunities

- The LHCb-SMOG accessible physics scenario is unique at the LHC:
 - Wide choice of the collision system, with intermediate A between p and Pb.
 - Energy range $\sqrt{s_{NN}} \simeq \sqrt{2E_N M_N} \in [41, 115] \ GeV$ for beam energy in $[0.9, 7] \ TeV$, filling an unexplored gap between SpS and LHC/RHIC results.

Access to large target Bjorken-x values at low Q², a poorly PDF constrained region

The Run2 SMOG results and operations

Saverio Mariani

LHCb fixed-target results and prospects

- First charm production study at LHC fixed-target at 86 GeV *pHe* and 110 GeV *pAr*
- $J/\psi \rightarrow \mu\mu$ and $D^0 \rightarrow K\pi$ result at y*<0 consistent with prediction with no **nucleon** intrinsic charm.

• First measurement of $\sigma(pHe \rightarrow \bar{p}_{prompt}X)$ at $\sqrt{s_{NN}} = 110 \, GeV$

Conclusions

- Only prompt \bar{p} considered
- Uncertainty dominated by lumi (SMOG not equipped with precise gauges for the gas pressure → *pe* scatterings used), still lower than the spread among models

Saverio Mariani

LHCb fixed-target results and prospects

- Charm in *pNe* (D^0 , Λ_c , quarkonia) and **light hadron productions and spectra** ongoing
- E.g., $\bar{\Lambda} \to \bar{p}\pi^+$ and $\bar{\Sigma} \to \bar{p}\pi^0$ antiproton production exploiting the IP separation wrt prompt and, for the former, the **exclusive decay reconstruction** \to **analysis in review**

LHCb experimentRun2 SMOGSMOG2 upgradeConclusionsLimitations of the Run2 programme (and how to mitigate them)

- The **SMOG gas spread in ± 20m** is a limiting factor, requiring:
 - Only (some) noble gases at p O(10⁻⁷ mbar), to keep the beam contamination low
 - Mostly short and dedicated data-taking periods, because of the overlap between the pp and SMOG luminous regions
 - Measurements limited by statistics and by data-driven description of tracking/PID with calibration channels in data
 - □ For PID, machine learning approach trained on highest-statistics SMOG sample and able to predict PID for lower ones developed → publication soon
- **Direct luminosity measurement** would reduce the dominant experimental uncertainty
- A gas injection system with **more than one gas recipient** and a controlled gas flux would make possible **to measure ratios** with different injected gases

The SMOG2 upgrade

LHCb experiment

 Run2 SMOG
 SMOG2 upgrade

 SMOG2 upgrade overview

Conclusions

LHCB-TDR-020

SMOG2 : fixed-target LHCb programme upgrade from Run3 on with the installation of a gas confinement cell upstream the interaction point (*z* ∈ [-500, -300] *mm*)

- Average **gas density** (and luminosity) will increase up to **two orders of magnitude** with the same gas flow as SMOG
- Gas pressure **precisely measured** and finely controlled → **removes lumi error.**
- More injectable gases (pending the machine approval): H, O, N, Kr, Xe...
- Simultaneous data-taking with pp possible, exploiting the separation wrt IP

LHCb experiment

Conclusions

Run2 SMOG SMOG2 upgrade Status of the SMOG2 installation

10

taste

- CTO-GTOC-JUC 200
- **SMOG2** cell installed in August and alignment and calibration accomplished
- Cell made up of two halves opening and closing (as the VELO does to protect its sensors outside data-taking)
- Work currently ongoing to:
 - Calibrate and install the new gas feed system, with p sensors and 4 gas lines
 - Prove that the simultaneous
 pp-SMOG2 data-taking is feasible (no showstoppers found)

LHCb experiment R	un2 SMOG		SMOG2 upgrade	Conclusions
	JGZ phy	sics op	portunities	LHCb-PUB-2018-015
	SMOG largest sample p–Ne@68 GeV	SMOG2 example p–Ar@115 GeV	• The expected in	crosso in statistics
Integrated luminosity	$\sim 100 \text{ nb}^{-1}$	100 pb^{-1}		
syst. error on J/ψ x-sec.	6-7%	2-3 %	in the injectable	gas species and
J/ψ yield	15k	35M	the expected hig	her accuracy will
D ^o yield	100k	350M		
Λ_c yield	1K	3.5M	further widen th	e LHCb-SMOG
$\psi(2S)$ yield Y(1S) yield	4	15k	accessible physic	cs scenario
Low-mass (5 $< M_{\mu\mu} < 9 \text{ GeV}/c^2$) Drell-Yan yield	5	20k		

- Charmonia spectra in different collision systems, b and low-mass Drell Yan states
- Extension of the $\bar{\mathbf{p}}$ production towards lower energies; study of isospin violation with $\sigma(pD \to \bar{p}X) / \sigma(pH \to \bar{p}X)$, of cosmic showers with *N*, *O*; addressing nuclei?
- Study of high-x parton PDFs and nucleon structure
- High-statistics ultra-peripheral ρ , ω , charmonia and bottomonia states with **high-Z targets**

Saverio Mariani

Conclusions

- By injecting gas in the LHC, LHCb is developing a **pioneering fixed-target programme**
- SMOG2 will operate from 2022 with up to x100 gas pressure and more species (H, N, O...)
- Preliminary results indicate that LHCb could be the first LHC detector running in collider and fixed-target mode at the same time!
- Physics accessible scenario further widened and covering nucleon structure, cosmic-rays and heavy-ion measurements, a **unique laboratory for QCD at the LHC**
- In parallel, R&D to inject polarized gases^[ref], include a solid target^[ref] or use crystals^[ref] in the future (not yet official LHCb programs, but support for the R&Ds)

Thanks for your attention!

Follow up? saverio.mariani@cern.ch

The LHCb sub-detectors

LHCb experiment

Run2 SMOG

SMOG2 upgrade

Conclusions

Charm production measurement

PRL 122 (2019) 132002

Saverio Mariani

The pHe luminosity measurement

- SMOG lacking of precise gauges for the injected gas pressure
 → lumi to be indirectly measured
- **p-e scattering with gas atomic electrons**, reconstructible in the detector as an isolated low-energy electron track, used
- **Charged-symmetric** background evaluated via positron yield and subtracted from the total electron one.
- Poor electron reconstruction efficiency \rightarrow , lumi affected by 6% uncertainty, **dominating the** σ **one**

PID for SMOG samples

- Data-driven modelling with calibration channels suffering from the **poor available statistics**
- Machine learning approach developed to predict templates of low-statistic samples

Antiproton measurement: systematics

-	Statistical					
	\overline{p} yields	$0.5 - 11\% \ (< 2\% \ \text{for most bins})$				
	Luminosity	1.5-2.3%				
222001	Correlated systematic					
	Luminosity	6.0 %	Dominant contribution from			
	Event and PV selection	0.3% Juminosity measurer				
	PV reconstruction	0.4-2.9%	motivation for SMOG2 upgrade			
	Tracking	1.3 - 4.1%				
18)	Non-prompt background	0.3-0.5% $lacksquare$	PID contribution sub-dominant:			
(20	Target purity	0.1%	machine learning approach			
21	PID	3.0-6.0%	developed.			
L 1	Uncorrelated systematic		·			
РВ	Tracking	1.0%				
	IP cut efficiency	1.0%				
	PV reconstruction	1.6%				
	PID	0 - 36% (< 5% for most bins)				
	Simulated sample size	$0.4 - 11\% \ (< 2\% \ \text{for most bins})$				

LHCb experiment

SMOG2 upgrade

Parents

XS

Transport

Total

Conclusions

Antiproton in CRs predictions

Run2 SMOG

- Prediction improved (also) thanks to LHCb result
- Uncertainties on the antiproton production XS still dominant

Saverio Mariani

-4(

Run2 SMOG SMOG2 upgrade The LHCb upgrade - overview

- LHCb is currently facing a major upgrade, de facto will be a brand-new experiment
- The hardware trigger level will be removed and the full detector read-out, calibration and alignment and the events reconstruction and selection will be in real time
- The first software trigger level will completely run on GPUs, a novelty in large experiments

Saverio Mariani

LHCb experiment

Fixed-target physics at LHCb

Offline

Analysis

(Turbo)

Offline