# *Stefano Zambito, CERN* On Behalf of the ATLAS Collaborations

# **Electroweak SUSY Searches with ATLAS**

EPS-HEP 2021





### Rare processes, fairly clean signatures

# Electroweak SUSY Production



# Electroweak SUSY Production



Rare processes, fairly clean signatures weak-scale SUSY motivated by naturalness dark matter  $\Omega h^2$  favors light  $\widetilde{W}/\widetilde{B}/\widetilde{H}$  and  $\widetilde{\ell}$ 



# Electroweak SUSY Production



Rare processes, fairly clean signatures weak-scale SUSY motivated by naturalness dark matter  $\Omega h^2$  favors light  $\widetilde{W}/\widetilde{B}/\widetilde{H}$  and  $\widetilde{\ell}$ 



EWKinos / sleptons contribute to muon's g-2





# Experimental Landscape

 $\tilde{\chi}_i^{\pm}/\tilde{\chi}_i^0$  production decay chains involving W, Z, h bosons + LSP  $\Rightarrow$ WWh/Z $W^{(k)}$ p $\tilde{\chi}_1^{\pm}/\tilde{\chi}_1^0$ W $\tilde{\chi}_1^{\pm}$  $ilde{\chi}_1^0$  $\tilde{\chi}_1^0$ + OR OR ...  $ilde{\chi}_1^0$  $ilde{\chi}_1^0$  $\tilde{\chi}_2^0/\tilde{\chi}_3^0$  $Z^{(*)}$ h ph/Zhh

# Experimental Landscape

## $\tilde{\chi}_i^{\pm}/\tilde{\chi}_i^0$ production $\Rightarrow$ decay chains involving W, Z, h bosons + LSP



#### ATLAS SUSY Searches\* - 95% CL Lower Limits

| JL          | ine 2021                                                                                                    |                                                                                                                                             |                                       |                                                                      |                      |                                                                                                            | $\sqrt{s} = 13 \text{ TeV}$                   |
|-------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|             | Model                                                                                                       | Signature                                                                                                                                   | $\int \mathcal{L} dt  [\mathbf{fb}^-$ | <sup>1</sup> ] Mass                                                  | limit                |                                                                                                            | Reference                                     |
|             | $	ilde{\chi}_1^{\pm} 	ilde{\chi}_2^0$ via WZ                                                                | $\begin{array}{lll} \text{Multiple } \ell/\text{jets} & E_T^{\text{mis}} \\ ee, \mu\mu & \geq 1 \text{ jet} & E_T^{\text{mis}} \end{array}$ | 5 139<br>5 139                        |                                                                      | 0.96                 | $m(\tilde{\chi}_1^0)=0$ , wino-bino $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino           | 2106.01676, ATLAS-CONF-2021-022<br>1911.12606 |
|             | $	ilde{\chi}_1^{\pm} 	ilde{\chi}_1^{\mp}$ via $WW$                                                          | $2 e, \mu \qquad E_T^{\text{mis}}$                                                                                                          | 139                                   | $\tilde{\chi}_1^{\pm}$                                               | 0.42                 | $m(\tilde{\chi}_1^0)=0$ , wino-bino                                                                        | 1908.08215                                    |
|             | $	ilde{\chi}_1^{\pm} 	ilde{\chi}_2^0$ via $Wh$                                                              | Multiple $\ell$ /jets $E_T^{mis}$                                                                                                           | <sup>5</sup> 139                      | $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden                    | 1.06                 | $m(\tilde{\chi}_1^0)$ =70 GeV, wino-bino                                                                   | 2004.10894, ATLAS-CONF-2021-022               |
| ct /        | $	ilde{\chi}_1^{\pm} 	ilde{\chi}_1^{\mp}$ via $	ilde{\ell}_L/	ilde{ u}$                                     | $2 e, \mu \qquad E_T^{mis}$                                                                                                                 | <sup>5</sup> 139                      | $\tilde{\chi}_1^{\pm}$                                               | 1.0                  | $m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$                             | 1908.08215                                    |
| EM<br>direc | $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$                                  | $2 \tau \qquad E_T^{\text{mis}}$                                                                                                            | <sup>5</sup> 139                      | $\tilde{\tau}$ [ $\tilde{\tau}_L, \tilde{\tau}_{R,L}$ ] 0.16-0.3 0.1 | <mark>2-0</mark> .39 | $m(\tilde{\chi}_1^0)=0$                                                                                    | 1911.06660                                    |
|             | $\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}},  \tilde{\ell} {\rightarrow} \ell \tilde{\chi}_1^0$ | $\begin{array}{lll} 2 \ e, \mu & 0 \ {\rm jets} & E_T^{\rm mis} \\ e e, \mu \mu & \geq 1 \ {\rm jet} & E_T^{\rm his} \end{array}$           | 139<br>139                            | $\widetilde{\ell}$ 0.256                                             | 0.7                  | $\mathfrak{m}(	ilde{\chi}_1^0)=0$<br>$\mathfrak{m}(	ilde{\ell})-\mathfrak{m}(	ilde{\chi}_1^0)=10~{ m GeV}$ | 1908.08215<br>1911.12606                      |
|             | $\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$                                             | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                        | 36.1<br>139                           | <i>Н</i> 0.13-0.23<br><i>Н</i>                                       | 0.29-0.88            | $ BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 $                     | 1806.04030<br>2103.11684                      |
|             |                                                                                                             | $0 \ e, \mu \ge 2$ large jets $E_T^{\text{fnis}}$                                                                                           | 139                                   | Ĥ                                                                    | 0.45-0.93            | $BR(\tilde{\chi}^0_1 \to Z\tilde{G})=1$                                                                    | ATLAS-CONF-2021-022                           |
|             |                                                                                                             |                                                                                                                                             |                                       |                                                                      |                      |                                                                                                            |                                               |
| *Only       | a selection of the ava                                                                                      | ailable mass limits on new states or                                                                                                        | 1                                     | <b>0</b> <sup>-1</sup>                                               | 1                    | Mass scale [TeV]                                                                                           |                                               |

\*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.



ATLAS-CONF-2021-022: two boosted hadronically decaying bosons +  $\not{E}_T$ CERN-EP-2021-021: three leptons +  $\not{E}_T$ CERN-EP-2021-059: four leptons +  $\not{E}_T$ 

*RPV scenarios* covered in M. Holzbock's talk! Further, L. Corpe's talk on *long-lived particles*!

ATLAS Preliminary

#### qq qq final state



qq bb final state



#### Signal models driven by three physics scenarios

- → a <u>baseline</u> MSSM scenario focusing on pairs of Wino, Bino and Higgsino  $(\tilde{\chi}_{\text{heavy}}, \tilde{\chi}_{\text{light}}) = (\tilde{W}, \tilde{H}), (\tilde{W}, \tilde{B}), (\tilde{H}, \tilde{B}), ...$
- → a GGM + naturalness scenario with light Higgsinos and gravitino LSP  $(\tilde{\chi}_{heavy}, \tilde{\chi}_{light}) = (\tilde{H}, \tilde{G})$
- → a Peccei-Quinn + naturalness scenario with light Higgsinos and *axino LSP*  $(\tilde{\chi}_{heavy}, \tilde{\chi}_{light}) = (\tilde{H}, \tilde{a})$

### Large-R jets (J) to identify boosted W, Z, h decays

- → dedicated taggers for W,Z→qq
  - $\rightarrow$  m<sub>J</sub>, N<sub>tracks</sub> and energy correlation func. D<sub>2</sub>
- $\rightarrow$  m<sub>J(bb)</sub> to select Z $\rightarrow$ bb and h $\rightarrow$ bb

### Main backgrounds

→ Reducible: Z+jets and W+jets, "semi-data-driven"
 → Irreducible: VVV and tt+X, taken from MC



0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

SUSY signal

 $\Delta$  m > 400 GeV

**ATLAS** Simulation Preliminary, √s = 13 TeV

 $\square$  W  $\rightarrow$  qq tagging

 $\mathbf{X} \to \mathbf{qq}$  tagging

signal efficiency

Efficiency

# Fully Hadronic Final State



#### Final state with 3 leptons from chargino + neutralino direct production

 $\rightarrow$  one lepton stemming from a  $W^{(*)}$  decay, a pair from either  $Z^{(*)}$  or SM  $h \rightarrow WW/ZZ/\tau\tau$ 

#### WZ-mediated models



Wh-mediated models



#### Signal models driven by two different scenarios within MSSM

- $\rightarrow$   $|M_1| < |M_2| < |\mu|$  resulting in Bino-like stable LSP and Wino-like degenerate  $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{0}$
- →  $|\mu| \approx EWK$  scale and an Higgsino triplet of quasi-degenerate  $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0, \tilde{\chi}_1^0$

Analysis<br/>layoutOn-shell selection:  $\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$  with 100% BR<br/>Off-shell selection:  $\tilde{\chi}_2^0 \rightarrow Z^* \tilde{\chi}_1^0$  with 100% BR<br/>Wh selection:  $\tilde{\chi}_2^0 \rightarrow h \tilde{\chi}_1^0$  with 100% BR

### SRs with many bins to cover different signal scenarios and masses

 $\rightarrow$  Exploiting several observables: jet multiplicity, H<sub>T</sub>, m<sub>T</sub> (W decay),  $\mathcal{L}_T$ , m<sub>@min</sub>; vetoing b-jets

#### Main backgrounds

- → Irreducible: mainly WZ, and SM Higgs, MC simulation normalized to data in CRs



### Off-shell WZ SRs

Wh SRs

#### WZ-mediated models Wh-mediated models exclusions up to 640 GeV exclusions up to 185 GeV -→Whữ Ω $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \rightarrow WZ \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$ wino/bino(+) m( $\widetilde{\chi}_{1}^{\pm}$ )=m( $\widetilde{\chi}_{2}^{0}$ ) 0160 ل ۲ (کر<sup>0</sup>) [GeV] ۱۷ 600 $m(\tilde{\chi}_{1}^{0})$ [GeV] -- Expected Limit (± $1\sigma_{exp}$ ) ATLAS ATLAS - Observed Limit (± $1\sigma_{\text{theory}}$ ) √s=13 TeV, 139 fb<sup>-1</sup> √s=13 TeV, 139 fb<sup>-1</sup> 500 Obs. Limit on-shell All limits at 95% CL All limits at 95% CL Obs. Limit off-shell -- Expected Limit (±1 $\sigma_{exp}$ ) Obs. Limit compressed - Observed Limit (±1 $\sigma_{theory}$ ) 400 ATLAS 8 TeV excluded ATLAS 8 TeV excluded 100 300 80 60 200 40 100 20 0 0 220 240 280 300 320 200 260 160 180 600 700 **1**00 200 300 400 500 800 $m(\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0})$ [GeV] $m(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0})$ [GeV]

Followed up previous excess (≈3.0σ): <u>PRD 98 092012</u> good agreement now with SM

| Recursive Jigsaw SRs | $\sigma_{ m vis}^{95}$ [fb] | $S_{\rm obs}^{95}$ | $S_{\rm exp}^{95}$ | CL <sub>b</sub> | p(s=0)(Z)   |
|----------------------|-----------------------------|--------------------|--------------------|-----------------|-------------|
| SR3ℓ-Low             | 0.24                        | 33                 | $30^{+10}_{-8}$    | 0.61            | 0.39 (0.28) |
| SR3 <i>ℓ</i> -ISR    | 0.14                        | 19                 | $12^{+5}_{-4}$     | 0.89            | 0.09 (1.32) |
|                      |                             |                    |                    |                 |             |

### Final state with 4 leptons from chargino + neutralino or chargino + chargino production

→ same-flavor opposite-charge pairs stemming from Z/h decays



#### For RPC SUSY, focusing on single scenario driven by GGM, with gravitino LSP

- $\rightarrow \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0, \tilde{\chi}_1^0$  assumed to be quasi-degenerate *higgsinos* (1 GeV splittings)
- $\rightarrow$  W\*/Z\* from their decay chain are too soft, and thus undetectable
- → *GGM* gives a mechanism where they can be cornered experimentally
  - $\rightarrow$  leptonic decays of Z/h from  $\tilde{\chi}_1^0 \rightarrow \tilde{G}$  transitions lead to clean signature

#### Analysis also considers several RPV scenarios: see M. Holzbock's talk

### Looser / Tighter SRs with different au multiplicities

 $\rightarrow$  Main observables are  $\mathcal{F}_T$  and effective mass (m<sub>eff</sub>)

### Main backgrounds

- → Irreducible: mainly ZZ and ttZ, MC normalized in CRs
- → **Reducible**: ≥ 1 misidentified lepton, data-driven







#### **Model-independent limits**

|                                       | $\langle \epsilon \sigma \rangle_{ m obs}^{95}$ [fb] | $S_{ m obs}^{95}$ | $S_{ m exp}^{95}$         |
|---------------------------------------|------------------------------------------------------|-------------------|---------------------------|
| SR0-ZZ <sup>loose</sup>               | 0.481                                                | 66.86             | $67.43^{+20.43}_{-15.71}$ |
| SR0-ZZ <sup>tight</sup>               | 0.081                                                | 11.28             | $11.52_{-3.34}^{+4.81}$   |
| SR0-ZZ <sup>loose</sup><br>byeto      | 0.043                                                | 6.01              | $7.10^{+2.82}_{-1.90}$    |
| SR0-ZZ <sup>tight</sup> byeto         | 0.028                                                | 3.87              | $3.63^{+1.44}_{-0.63}$    |
| SR0 <sup>loose</sup><br>bveto         | 0.070                                                | 9.79              | $8.28^{+3.58}_{-2.30}$    |
| SR0 <sup>tight</sup><br>bveto         | 0.028                                                | 3.87              | $4.29^{+1.56}_{-0.86}$    |
| SR0 <sub>breq</sub>                   | 0.046                                                | 6.33              | $3.78^{+1.59}_{-0.66}$    |
| SR1 <sup>loose</sup> <sub>bveto</sub> | 0.046                                                | 6.37              | $7.46^{+2.92}_{-2.04}$    |
| SR1 <sup>tight</sup> <sub>bveto</sub> | 0.032                                                | 4.47              | $4.22^{+1.63}_{-1.04}$    |
| SR1 <sub>breq</sub>                   | 0.033                                                | 4.56              | $4.59^{+1.77}_{-1.22}$    |
| SR2 <sup>loose</sup> <sub>bveto</sub> | 0.061                                                | 8.45              | $7.45^{+2.36}_{-1.24}$    |
| SR2 <sup>tight</sup> <sub>bveto</sub> | 0.041                                                | 5.63              | $3.53^{+1.06}_{-0.15}$    |
| SR2 <sub>breq</sub>                   | 0.030                                                | 4.17              | $3.16^{+1.20}_{-0.16}$    |
| SR5L                                  | 0.129                                                | 17.88             | $9.88^{+4.08}_{-2.44}$    |

|          | SR0-ZZ <sup>loose</sup> | SR0-ZZ <sup>tight</sup>                                                               |                                                                                                                                           |
|----------|-------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Observed | 157                     | 17                                                                                    |                                                                                                                                           |
| Total SM | $161^{+41}_{-43}$       | $18.4^{+3.6}_{-3.3}$                                                                  |                                                                                                                                           |
|          | Observed<br>Total SM    | SR0-ZZ <sup>loose</sup><br>Observed 157<br>Total SM 161 <sup>+41</sup> <sub>-43</sub> | SR0-ZZ <sup>loose</sup> SR0-ZZ <sup>tight</sup> Observed         157         17           Total SM $161^{+41}_{-43}$ $18.4^{+3.6}_{-3.3}$ |

# Summary & Conclusions

Extensive search program, no significant excess, stringent exclusions...

... yet, good portions of well-motivated parameter space still unexplored!!!

Good news is, plenty of data will be collected in coming years: stay tuned!



### Dominant backgrounds are in general WZ, ZZ, WW, W/Z+jets, top processes

- Signal Regions (SRs) → set of requirements maximize S/B
  - → multiple bins often used to target different signal masses
- Control Regions (CRs) → normalize simulated backgrounds to data
  - → extrapolate to SR using MC-based transfer factors
  - → or, extract background predictions entirely from data

### Validation Regions (VRs) → validate background estimates against data

