Searches for electroweak SUSY production in leptonic and hadronic final states with the CMS experiment

Liam Wezenbeek - UGent/ULB 26-07-2021

Overview

CMS explores a wide range of SUSY models

- Absence of observed signal might indicate:
 - Mass of colored sparticles too high
 - Mass spectrum too compressed

ELECTROWEAK PRODUCTION Latest results

stau production Talk by Giulia Collura

Gauge Mediated SUSY breaking

slepton production

Chargino/neutralino/ higgsino production

- Smaller cross sections than strong production
- Electroweak production models less constrained

All SUSY papers

All SUSY PAS

FLECTROWEAK PRODUCTION

Latest Full Run II results from CMS

Gauge Mediated USY breaking

> Chargino/neutralino/ higgsino production

nan strong production models less constrained

1ℓ+jets: SUS-20-003

mass limit for light LSPs unless stated otherwis-

Moriond 2021

Leptonic final state searches: arXiv:2106.14246

Submitted to IHEP

Hadronic final state searches: SUS-20-003 (PAS) SUS-20-004

Chargino $\tilde{\chi}_i^{\pm}$ and neutralino $\tilde{\chi}_i^0$: Mixed states of Higgsinos and Electroweak gauginos

$$m(\tilde{\chi}_4^0) > m(\tilde{\chi}_3^0) > m(\tilde{\chi}_2^0) > m(\tilde{\chi}_1^0)$$

 $m(\tilde{\chi}_2^{\pm}) > m(\tilde{\chi}_1^{\pm})$

All SUSY <u>papers</u>

All SUSY PAS

Multilepton search: signal models

- Search for production of neutralinos and charginos
- R-Parity conserved
- Simplified SUSY models
- Targets fully leptonic final states + missing energy
- https://arxiv.org/abs/2106.142 46 "SUS-19-012"

M(LSP) and M(chargino) free parameters

Slepton-mediated decay

WZ/WH-mediated decay

- Sleptons too heavy
- Leptonic SM boson decay

Gauge Mediated SUSY breaking

- Gravitino LSP
- Leptonic SM boson decay

Strategy and selection of multilepton search

Search categories defined according to final states

Final State	Sensitive models
2 SS leptons	"compressed" scenarios Small δm between SUSY particles
3 light leptons, no OSSF	nonresonant lepton production from H decay
3 light leptons, OSSF	flavor democratic
3 leptons including tau	tau enriched tau dominated
4 leptons	Gauge mediated SUSY breaking

3 light leptons, OSSF

- Highly sensitive to flavor democratic
- Large background from SM

Parametric NN

- Trained for:
 - Slepton mediated
 - WZ-mediated
- Parameter: δm = M(chargino)-M(LSP)
- δm driving factor for kinematics

Interpretation of multilepton search results

"Flavor democratic"

slepton mediated

Major improvements from

full Run II and NN

No significant excess observed

WZ corridor has been closed

GMSB HH-mediated

SUS-20-004: Search for higgsinos in two Higgs bosons and missing transverse energy

- Using $H\rightarrow bb$ (BR $\approx 60\%$)
- R-parity conserved → Missing energy from LSP
- Final state: multiple (b-tagged) jets + missing energy

Gauge mediated SUSY breaking:

- Boost to cross section from different production channels
- Parameter of interest: NLSP mass

Simplified SUSY model:

• Parameters of interest: LSP and NLSP masses

Strategy of HH+MET search

To be sensitive to large range of sparticle mass: 2 approaches for H reconstruction

Resolved scenario

H→bb reconstructed as two separate jets

H→bb reconstructed as single wide jet

HH+MET Background estimation

Resolved scenario:

 Mass of Higgs boson candidates and number of b-tagged jets as discriminating variables

Boosted scenario:

 Number of double b-tagged wide jets and mass of wide jets as discriminating variables ABCD method to estimate SM background

$$N_{\rm SR} = \kappa \frac{N_{\rm CSR}}{N_{\rm CSB}} N_{\rm SB},$$

with κ a correction factor for correlations determined in MC

Results and interpretation of HH+MET search

Maximum likelihood fit to data according to the CLs method

Boosted scenario cleaned of overlap with resolved

No compelling excess of events observed:

- Single bin not within stat. unc.
- Prediction based on 2 events
- Global significance: 1.9 sd

multilepton exclusion up to 200 GeV

SUS-20-003

"Search for chargino-neutralino production in final states with a Higgs boson

and a W boson"

- leptonic W decay
 - \rightarrow single lepton
- H →bb (BR ~ 60%)
 → 2 b-tagged jets or single wide jet with H-tag from DNN

Backgrounds:

- Main contributions: top quark production and W boson production
- Estimated from data using transfer factors from CR to SR
- Transfer factors from background enriched CR in MC
- Validated in data

Results and interpretation of single lepton search

Binned maximum likelihood for SUSY signal strength, yield of backgrounds and nuisance parameters performed:

No excesses observed

Analysis excludes:

- Charginos up to 820 GeV
- LSP up to 350 GeV

Much more stringent exclusion compared to leptonic final state explored in SUS-19-012

Improvement of 350 GeV on chargino masses and 250 GeV on neutralino masses compared to previous iteration of this analysis

Conclusions

- Three analyses searching for electroweak production of SUSY using full Run II data presented
- No significant excesses observed
- Exclusion limits further expanded
- Further updates in electroweak
 SUSY production to follow
- Looking forward to Run III!

BACKUP

SUS-19-012: signal models

M(LSP) and M(chargino) free parameters

- Search for production of neutralinos and charginos
- R-Parity conserved
- Simplified SUSY models
- Targets fully leptonic final states + missing energy
- https://arxiv.org/abs/2106.142 46

- Different flavor scenarios depending on composition of chargino/neutralino:
 - <u>"Flavor democratic":</u> Equal probability for all lepton flavors
 - <u>Tau enriched:</u> Chargino decay favors taus
 - <u>Tau dominated:</u> Exclusive decay to taus

- Sleptons too heavy
- Forced decay to SM bosons and LSP
- Leptonic SM boson decay
- BR ~3%: Much lower than slepton mediated decay

- Gauge Mediated SUSY breaking
- Higgsino-like chargino/neutralino
- ~ massless gravitino
- ~ mass degenerate charginos/neutralinos
- Effective NLSP production

SUS-19-012: Backgrounds

Estimated from simulation and validated in control regions in data:

- WZ: Additional validation of MT distribution for effects from:
 - o mispairing of leptons
 - o MET resolution
- \bullet ZZ
- tX/ttX
- Triboson
- Internal/external conversion

4 Types of SM backgrounds.

- SM events with 3 or more prompt leptons or SS dilepton.
- External and internal conversions of photons
- Nonprompt backgrounds
- Charge mismeasurement

Estimated using data-driven "tight-to-loose" method:

- Main contributions:
 - o ttbar
 - \circ DY
- Light lepton ratio measured in single lepton QCD-enriched events
- Tau ratio measured separately for tt and DY control regions
- Background estimation from applying ratio to "sideband" of SR where one or more leptons fails tight selection
- Tau: ttbar or DY ratio applied depending on major contribution in the SR

Electron sign misid probability from simulated DY, ttbar and diboson production

• Validated and normalized in DY control region

Muon sign misid probability found negligible in MC → Estimated from MC

SUS-19-012: Strategy and selection

Search categories defined according to:

- Number of leptons
- Flavor content
- OSSF pairs

3 light leptons, no OSSF

- Sensitive to nonresonant lepton production from H decay
- Targets H→WW (BR ~ 20%)
- SRs binned in min($\Delta R(l, l)$)

3 light leptons, OSSF

- Highly sensitive to flavor democratic
- Large background from SM
- 2 strategies:
 - A set of SR
 - Parametric Neural <u>network</u>

Parametric NN

- Parametric in δm = M(NLSP)-M(LSP)
 - Relatively small difference between different mass points but equal δm
- Training for slepton mediated (for 3 different slepton mass points) and WZ decay models

Set of SRs:

 Binned in MT, missing transverse energy, HT and M(l, l)

SUS-19-012: Strategy and selection

SUS-19-012: NN

SUS-19-012: NN

→ NII(750/700) • Data

 $\tilde{\chi}^{\pm}\tilde{\chi}^{0} \rightarrow \tilde{l}v\tilde{l}l$, x = 0.5, δm = 50 GeV

Multiboson

Multiboson

tt/t + X

2 same sign light leptons

"2lSS"

3 leptons: 2 OSSF light leptons + 1 tau

3 leptons: 2 OSOF light leptons + 1 tau

4 leptons, 2 OSSF pairs

3 leptons: 2 SS light leptons + 1 tau

> 3 leptons: 1 light lepton 2 tau

4 light leptons, no OSSF pairs

2 light leptons + 2 tau 2 OSSF

3 light leptons + 1 tau

2 light leptons + 2 tau
1 or less OSSF

SUS-19-012: Results

No significant excess observed:

- Shaded area:
 Expected test statistic distributions from background-only fit
- <u>Points:</u>
 Observed test statistic

Slepton-mediated flavor democratic decays

Slepton-mediated tau-enriched decays

Slepton-mediated tau-dominated decays

GMSB ZZ decay

GMSB HZ decay

WH-mediated decay

GMSB HH decay

SUS-20-004: Search for higgsinos in two Higgs bosons and missing transverse energy

- Using $H\rightarrow bb$ (BR $\approx 60\%$)
- R-parity conserved → Missing energy from LSP
- Final state: multiple (b-tagged) jets + missing energy

Gauge mediated SUSY breaking:

- Chargino/Neutralino dominated by higgsino content
- Effective NLSP production
- Massless goldstino/gravitino
- Parameter of interest: NLSP mass

Simplified SUSY model:

- More generic model
- Bino LSP and higgsino NLSP not nearly mass degenerate
- Only regard specific production: ~17% of sum of all cross sections
- Parameters of interest: LSP and NLSP masses

SUS-20-004: Strategy and selection

To be sensitive to large range of sparticle mass:

2 approaches for H reconstruction

Resolved scenario

H→bb reconstructed as two separate jets

- 4 or 5 regular jets, subset of which is b-tagged
- Form Higgs boson candidates from pairs with smallest Am(bb) (absolute mass difference between pairs)
- ∆m(bb) < 40 GeV
- <m(bb)> < 200 GeV</p>
- $max(\Delta R(bb))$ required to small

Boosted scenario

H→bb reconstructed as single wide jet

- Selection of wide (AK8) jets as H candidates
- Requirement on double b-tagging discriminator
- Compute mJ using "soft drop" algorithm
- Requirement of mJ in large Higgs mass window
- No restriction on number of regular jets

Baseline selection:

- Large missing energy (>150 GeV and > 300 GeV)
- Veto on leptons or isolated tracks
- Jets not aligned with missing energy

SUS-20-004: Background estimation

ABCD method to estimate SM background

$$N_{\rm SR} = \kappa \frac{N_{\rm CSR}}{N_{\rm CSB}} N_{\rm SB},$$

with κ a correction factor for correlations determined in MC as:

$$\kappa = \frac{N_{SR} N_{CSB}}{N_{SB} N_{CSR}}$$

Resolved scenario:

- Mass of Higgs boson candidates and number of b-tagged jets as discriminating variables
- Further
 discrimination by
 splitting in missing
 transverse energy
 (MET) and ΔR bins

Boosted scenario:

- Number of double b-tagged wide jets and mass of wide jets as discriminating variables
- Further discrimination by splitting in missing transverse energy (MET)

SUS-20-004: Results and interpretation

Signal yield extraction from maximum likelihood fit to data according to the CLs method

Boosted scenario cleaned of overlap with resolved

No compelling excess of events observed:

- Single bin not within stat. unc.
- In resolved scenario for
 - \circ $\Delta R < 1.1$
 - \circ N(B) = 3
 - o 300 GeV < MET < 400 GeV

4 observed yields vs 0.074 expected

- Prediction based on 2 events
- Frequentist local significance: 3.2 sd
- Global significance: 1.9 sd
- Models considered do not predict such excess

Gauge mediated SUSY breaking

- NLSP mass excluded from 175 GeV to 1025 GeV
- SUS-19-012 exclusion up to 200 GeV

Simplified SUSY

- Expected limits up to 520 GeV for NSLP and 120 GeV for LSP
- Observed cross sections below theoretical cross sections for entire plane

SUS-20-004: Strong production

Back to main slide

SUS-20-003

SUS-20-003

"Search for chargino-neutralino production in final states with a Higgs boson and a W boson"

- leptonic W decay

 → single lepton
- H →bb (BR ~ 60%)
 → 2 b-tagged jets or single wide jet with H-tag from DNN

Event Selection:

- 1 isolated lepton
- MET > 125 GeV
- 2-3 "regular" (AK4) jets with exactly 2 b-tagged jets consistent with H mass
- No isolated tracks or veto tau candidates
- MT > 150 GeV to remove W backgrounds
- High M(CT) to remove tt background (with endpoint at top quark mass)

Backgrounds:

- Main contributions: top quark production and W boson production
- Estimated from data using transfer factors from CR to SR
- Transfer factors determined from background enriched CR in simulation
- Validated in data

Categorization:

- Number of small-R jets
- Number of H-tagged wide jets
- Missing transverse energy