
Searches for heavy resonances decaying into Z, W, and Higgs bosons at CMS

Cheng Chen (Peking University) On behalf of the CMS Collaboration

> EPS-HEP 2021 July 26 - 30, 2021

Introduction

New CMS results related with searches for heavy resonances decaying into Z,
 W, and Higgs bosons using full Run-2 data:

Search for resonant pair production of new particles decaying to pairs of b quarks in the boosted regime	<u>CMS-PAS-B2G-20-003</u>
Search for resonant production of HH to 4b in boosted and semi- boosted topologies	<u>CMS-PAS-B2G-20-004</u>
Search for resonant production of HH decaying to bb and leptons	<u>CMS-PAS-B2G-20-007</u>
Search for diboson resonances in ZV/H to Ilqq/bb final states including axion-like particles	<u>CMS-PAS-B2G-20-013</u>
Search for resonances decaying into WVV in the single lepton final state	<u>CMS-PAS-B2G-20-001</u>
Search for resonance decays to triple W-boson in full hadronic final states using 13TeV full Run-2 pp collision data	<u>CMS-PAS-B2G-21-002</u>

Jet tagging

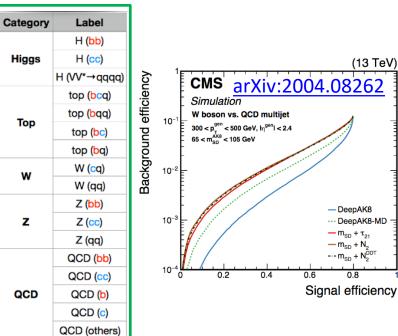
Boosted objects \rightarrow small angular separation \rightarrow merged jets (W/Z \rightarrow qq; H \rightarrow bb/qqqq/qqlv)

- large-radius jets
- Jet grooming

W/Z/H

Boosted jets: Increasing transverse momentum, p_T

Techniques for a successful boosted analysis:

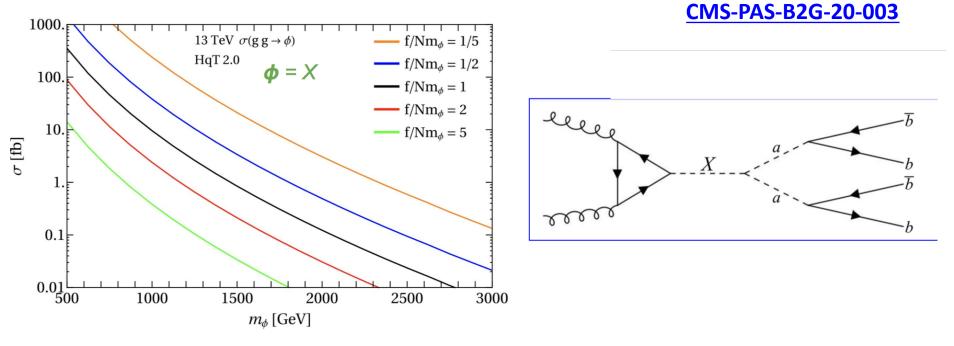

- > N-subjettiness $\tau_N = \frac{1}{d_0} \sum_{i} p_{T,k} \min \{\Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k}\}$
- ratios: $\tau_{21} = \tau_2 / \tau_1$ to tag 2-prong objects
- Designing decorrelated taggers (DDT)

DeepAK8 tagger

- multi-class tagger for t/W/Z/H tagging
- use PF candidates and secondary vertices

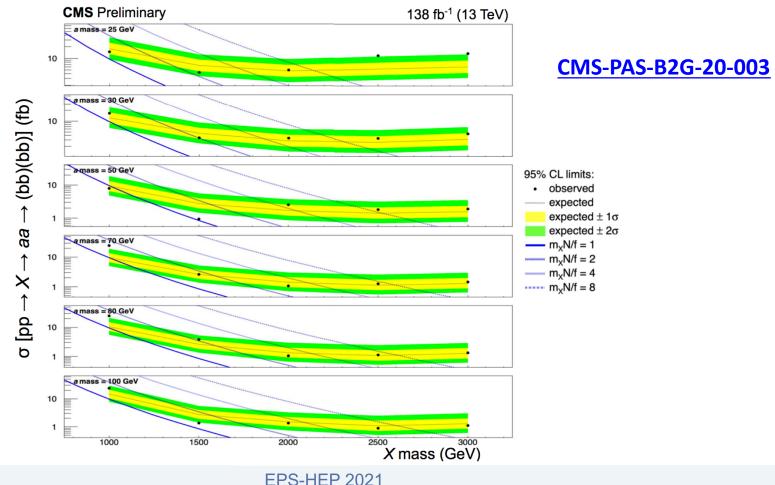
Double-b tagger

- discriminate $H \rightarrow bb$ decays
- combine information from displaced tracks, secondary vertices as inputs to a BDT



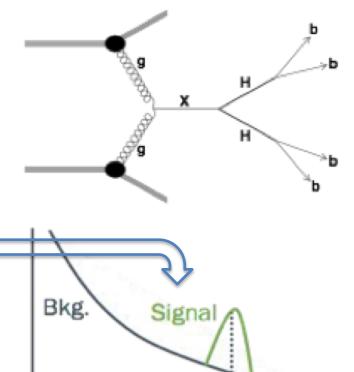
Physics Models

- Signature is a heavy scalar **X** decaying to two light scalars **a**.
 - a assumed to decay with 100% BR to pairs of b-quarks
 - Analysis considers $\mathbf{a} \in [25, 100]$ GeV and $\mathbf{X} \in [1, 3]$ TeV
 - No previous searches from CMS or ATLAS for this signature, though boosted $X \rightarrow hh$ has similar final states.
- Reference models:
 - Covers NMSSM, Higgs Doublet, 2HDM



95% CL Exclusion Limits

- V, VV and top backgrounds considered (even with huge normalization uncertainty), but had no effect on slight excess. Many points correlated.
- 95% CL exclusion limits shown on the same plane:
 - \bigcirc Useful for talking about excluded phase space.

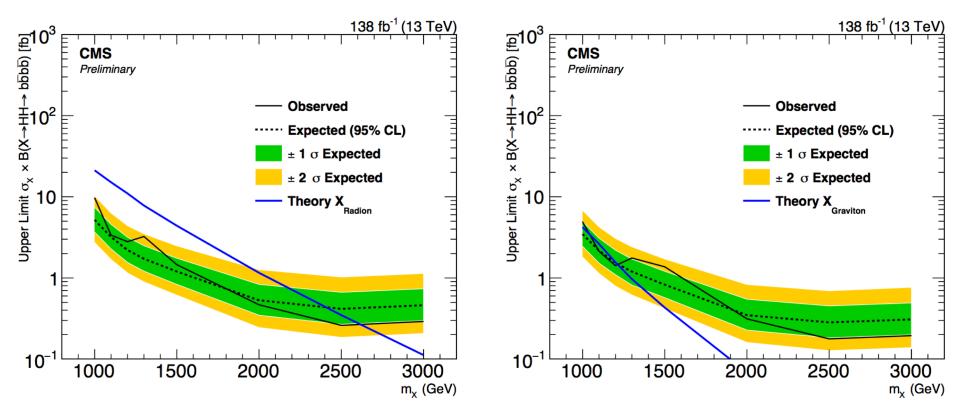


Boosted Higgs boson pairs

- □ Many models predict resonance "X" decaying to HH
 - · Warped ED, RS models, extra singlets
- □ Massive X => Lorentz-boosted Higgs bosons
- Efficient to reconstruct using large-area jets and substructure variables
- Boosted b tagging to reject multijet
 backgrounds
- Resonant X signal: a bump on falling m_{HH}^- background

CMS-PAS-B2G-20-004

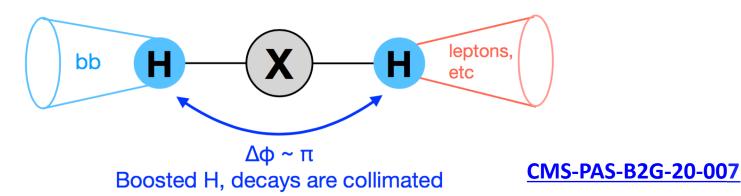
m_{HH}



□Unblinding limit with 2x2 fit function

CMS-PAS-B2G-20-004

- No significant excess over background only hypothesis.
- Most Significant local excess: 1.9 sigma at 1.5 TeV



Limits

Signal Overview

Model-independent search for spin-0 or spin-2 X boson from 800 GeV to 4.5 TeV

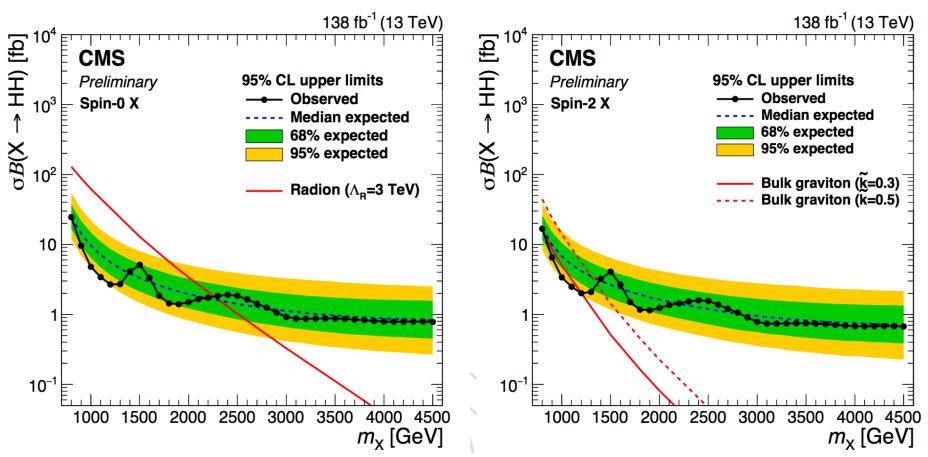
Decays to two boosted Higgs bosons in opposite directions

One Higgs decays via H→bb

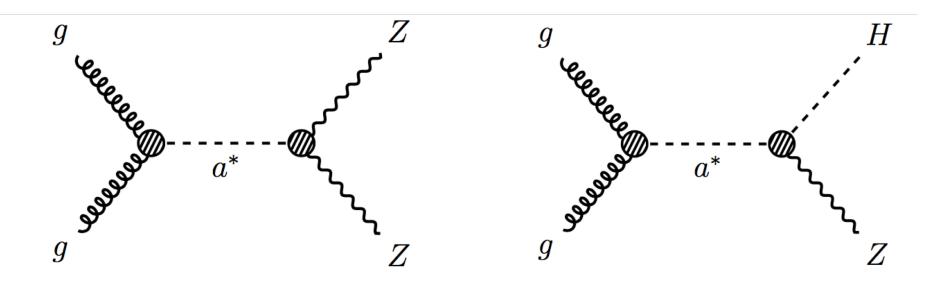
Boosted \rightarrow reconstruct as large radius (AK8) jet with substructure Soft-drop mass *mbb* of the jet is one of two search variables

Other Higgs decays into a final state with leptons

 $H \rightarrow WW^*$ (one off-shell W) and $H \rightarrow \tau \tau$ considered Different strategies for reconstructing momentum of leptonic H boson

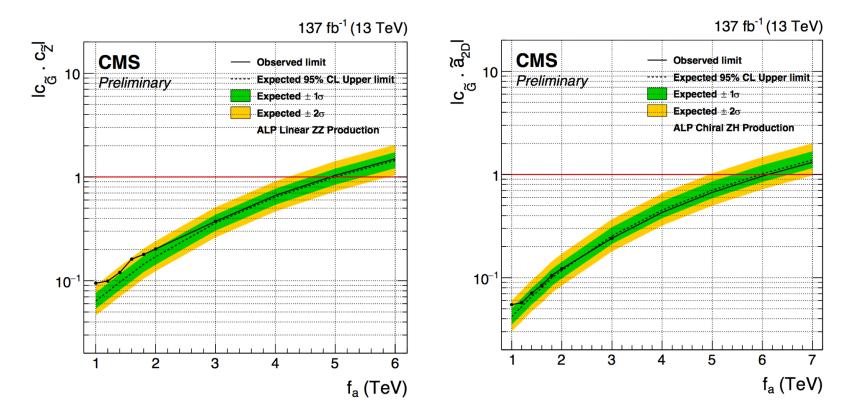

Invariant mass of $H \rightarrow bb$ and leptonic H boson, *mhh*, is second search variable Simultaneous fit in 2D *mhh* plane to extract background and look for signal

CMS-PAS-B2G-20-007


Spin-2 limits ~ 20% stronger than spin-0 due to larger signal acceptance

More central angular distribution of HH decays

- Gluon-initiated ALP-mediated processes provide new possibilities to test the ALP universe beyond classical searches.
 <u>CMS-PAS-B2G-20-013</u>
- These channels are sensitive to the product of the ALP coupling to gluons times the coupling to EWK dibosons.

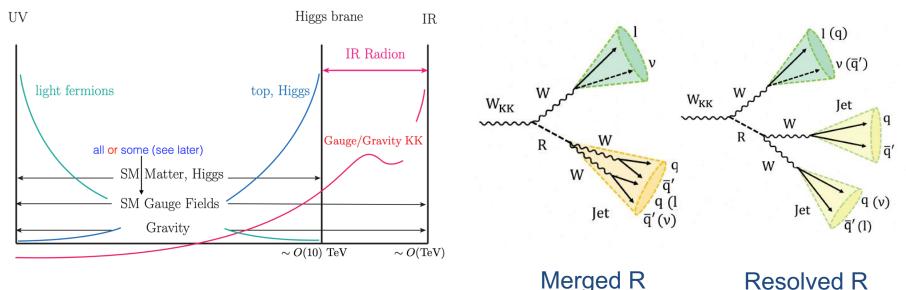


Gavela, No, Sanz, Trocóniz; PRL 124 (2020) 051802

CMS-PAS-B2G-20-013

• Expected and observed 95% CLs upper limits on $\sigma(gg \rightarrow a^* \rightarrow ZZ/ZH)$ (fb) for $f_a = 3$ TeV.

Model	2.5%	16%	50%	84%	97.5%	Observed
ALP linear ZZ	79	107	151	218	304	162
ALP chiral ZH	32	39	64	94	134	57

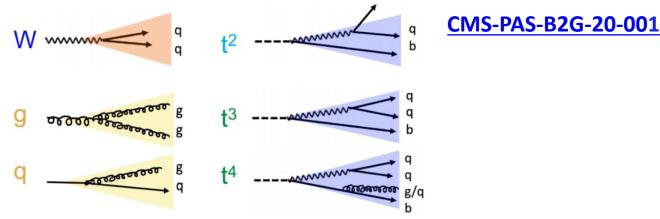


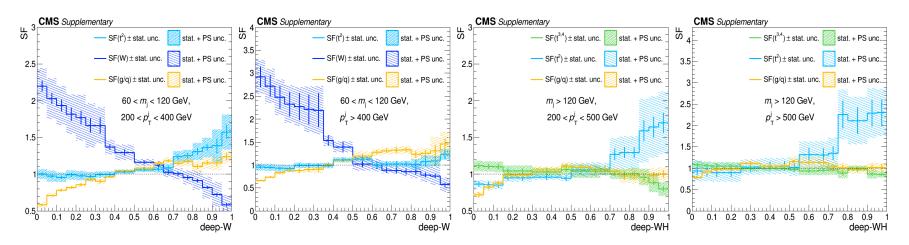
Tri-boson resonance

CMS-PAS-B2G-20-001

- First search for resonances decaying in cascade to final state with 3 W bosons
- Extended Warped ED model :
 - Extra brane by splitting the Bulk (<u>arXiv:1711.09920</u>, <u>arXiv:1612.00047</u>);
 - ➢ Only EW bosons in the extended bulk → dominant: $V_{KK} \rightarrow R V \rightarrow VVV$
 - WWW having the largest contribution

- Various fields propagate in different regions
- "di-SM" suppressed in favor of "tri-SM"

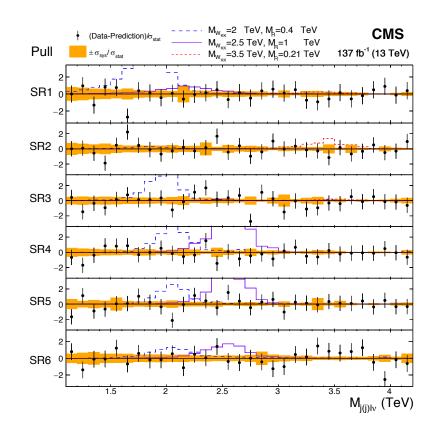

 $W_{KK} \rightarrow WWW \rightarrow l + v + jets$


DeepAK8 tagger calibration

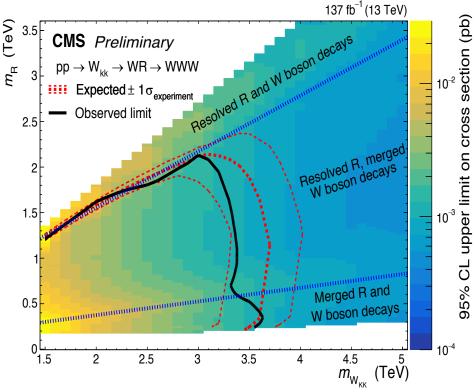
• Calibrate deep tagger discriminant shape using SM proxies:

• Apply parton-level matching and correct MC shapes bin by bin

Use these SFs to correct all jets for both BKG and signal



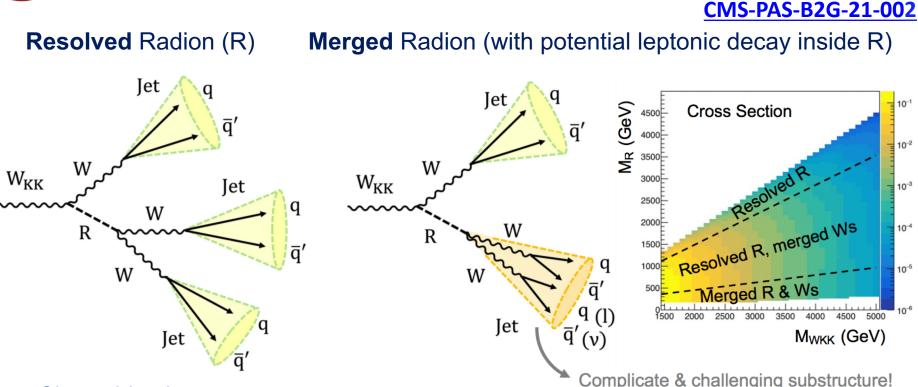
Results and limit



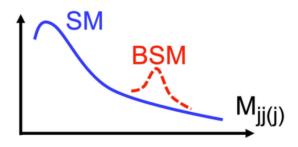
CMS-PAS-B2G-20-001

 Combined fit of six signal regions. (No excess over the background estimation is observed.)

• Limits in 2D W_{KK} vs. R mass plane. The first of their kind!

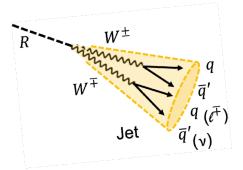


- The triboson resonances are excluded up to m_{WKK} = 3.4 (3.6) TeV for m_R = 1 (0.35) TeV.
- > WKK masses below 3 TeV are excluded for $0.06 < m_R/m_{WKK} < 0.7$.

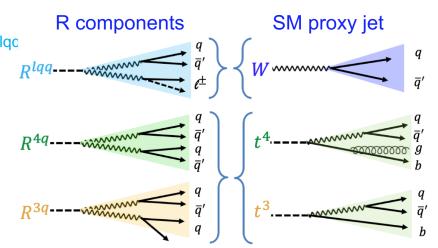

Signal profile for tri-boson 0-lep final state

Clear objective:

- Hunt a Reso formed by 3 or 2 massive jets
- Resolved \rightarrow 3 AK8 jets \rightarrow search for reso at M_{jjj}
- Merged → 2 AK8 jets → search for reso at M_{jj} (Binning over merged radion mass, i.e. m_{jmax})



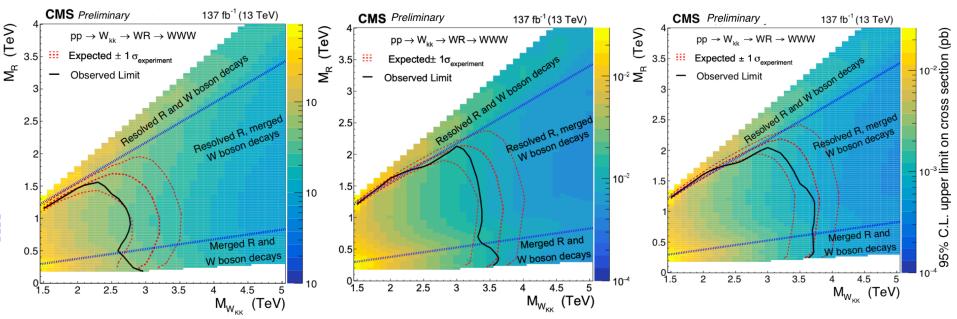
Calibration for signal


CMS-PAS-B2G-21-002

Merged Radion jet $\approx R^{4q} + R^{3q} + R^{1qq}$

Need special calibration – no standard candle

- Observe similarity between W↔R^{lqq} jets
 → we apply scale factors for W, SF(W), on R^{lqc}
- 2. Observe similarity between R^{4q}↔ R^{3q} jets with merged top: t^{3,4}
 → we apply SF(t^{3,4}) on R^{4q}, R^{3q}
- 3. The difference between the performances of the SM candle and signal is taken into account as the systematic uncertainty.



Results and limit

We set upper limits on $X \rightarrow RW \rightarrow WWW$ cross section, lower limits on Mwkk, MR masses (Asymptotic approximation)

1-lep (B2G-20-001)

- Observed limit is ~1σ weaker wrt to the expected for resolved signal. This is due to the excess at SR4, at 3.0 TeV (not compatible with signal)
- Combination of B2G-21-002 with B2G-20-001 (1+0 lep.): Systematics on SFs correlated (apart from SFq/g), as well as PU, PDFs, μ R, μ F All the rest uncorrelated.

EPS-HEP 2021

CMS-PAS-B2G-21-002

1- & 0-lep (Combination)

- Rich phenomenology & final states ZH, WV, WH, WWW, clear experimental signatures
- The use of jet substructure enables the search for heavy bosons resonances
- ➢ No evidence for new physics observed yet, 95% CL limits are set.
- More results to come out, and follow also here to keep track!
 <u>CMS publications</u>

Analysis Selection

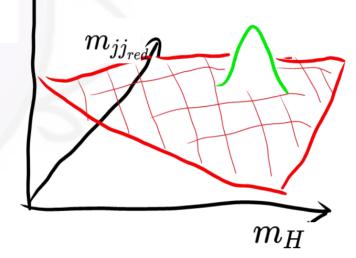
CMS-PAS-B2G-20-003

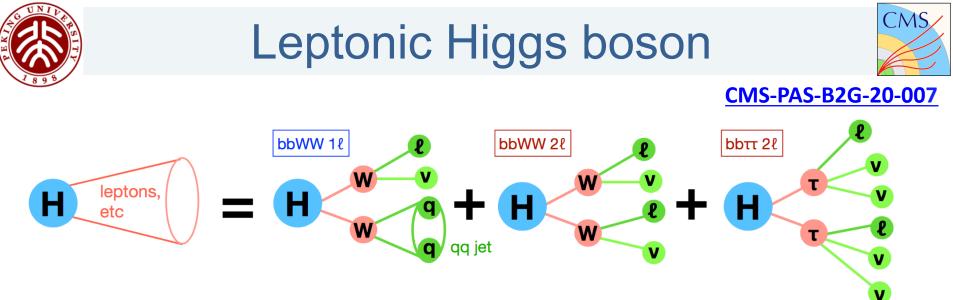
• Preselection:

- Event HT > 900 GeV (reconstructed from ak4 jets with $|\eta| < 2.4 \& p_T > 30 GeV$)
- $\circ~$ Two Jets with $|\eta|$ < 2.4 & $p_{_{\rm T}}$ > 300 GeV
- Tight jet ID (not muon-veto) applied to both jets
- Using "Double-b tagger" for tagging. **ARC:** *ML taggers sculpted low mass!*
- Now use three quantities to divide remaining events into six region:
 - Mass asymmetry = (m1 m2)/(m1 + m2)
 - Double-b tagging score of the leading jet: D^{bb}_{i1}
 - Previously part of preselection
 - $\circ \quad \Delta\eta \text{ between the two jets} \\$
- These selections optimized using QCD and Signal MC to maximize s/\sqrt{b} (or punzi significance), with preference given to low **a** mass signals

	m _{asym}	$\Delta \eta$	D_{j1}^{bb}
tight search region	< 0.1	< 1.5	> 0.8
loose search region	∈ [0.1, 0.25]	< 1.5	> 0.8
tight $\Delta \eta$ sideband	< 0.1	> 1.5	> 0.8
loose $\Delta \eta$ sideband	∈ [0.1, 0.25]	> 1.5	> 0.8
tight double-b sideband	< 0.1	< 1.5	[-0.8, 0.3]
loose double-b sideband	∈ [0.1, 0.25]	< 1.5	[-0.8, 0.3]

Background estimation: "2D-Alphabet" method




CMS-PAS-B2G-20-004

Analysis strategy:

2D likelihood fit over the *m_H* vs *m<sub>jj_{red}* space
 Can blind an *m_H* signal region
 Simultaneous fit for signal and all
</sub>

- Simultaneous fit for signal and al backgrounds
- Non-resonant bkg from data
- Resonant backgrounds from MC
 - Allowed to morph during fit via shape and normalization uncertainties
- Signal parameterized via templates as well

Only collect final state muons and electrons

We are sensitive to $W \rightarrow \tau \nu \rightarrow (e/\mu) \nu \nu$

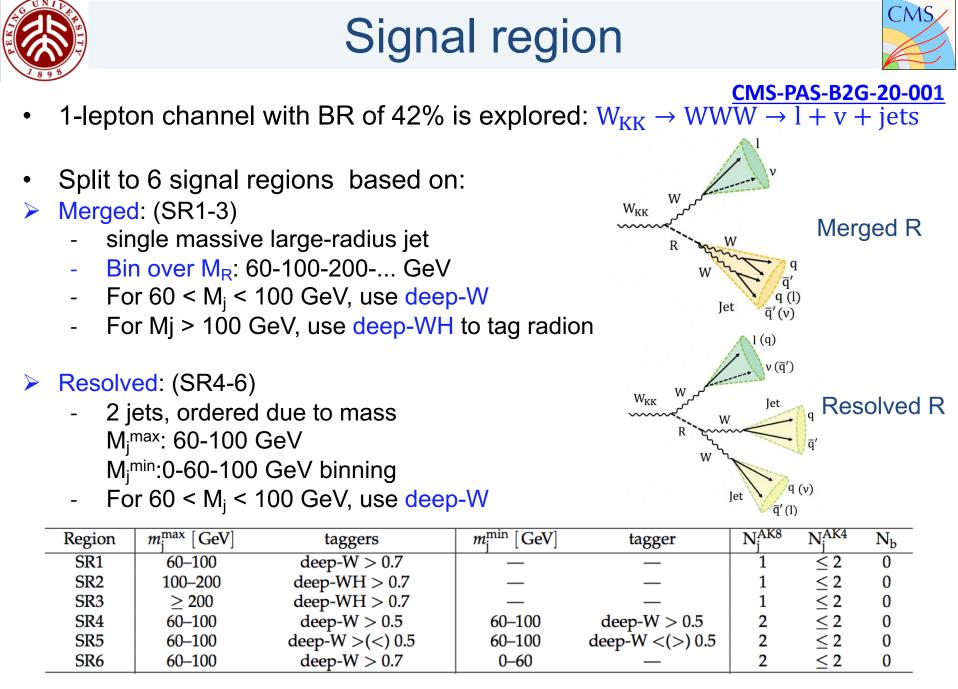
Single-lepton (1ℓ) channel

Reconstruct W→qq as large radius (AK8) jet with substructure
No mass constraint since W can be on- or off-shell
Lepton is often very close to the qq jet, sometimes overlapping
Loose IDs and isolation, tailored for leptons in jets

Dilepton (2^ℓ) channel

No jet \rightarrow cleaner event than in 1 ℓ

IDs and isolation different than in 1ℓ


Looser impact parameter constraints to remain sensitive to leptons from $\tau\tau$

CMS

CMS-PAS-B2G-20-013

- Off-shell ALP production. This is very promising because the cross-sections are large enough to constraint significantly the theoretical models using Run 2 data.
- ALPs are s-channel mediators in gg → VV production with s-hat >> M_a². The size of s-hat is enhanced by the mass threshold of the on-shell diboson system in the final state; but most importantly by the hard pT-spectrum provided by the derivative couplings.
- The analysis uses the ZV, WW, ZH searches looking for high-pT / high-mass deviations in the tails of the transverse momentum / mass spectra with respect to SM expectations.
- For ALPs light enough the cross-sections, kinematical distributions, and expected limits are found independent of M_a, from the very-light limit up to masses of the order of 100 GeV.

