

Search for heavy BSM particles coupling to third generation quarks at CMS

Anna Benecke (UCLouvain) on behalf of the CMS Collaboration

Introduction

(graphic credit to Lucas Corcodilos)

⁽graphic credit to Alexander Fröhlich)

- Search for $b^* \rightarrow tW$
- Combination of I+jets (<u>CMS-PAS-B2G-20-010</u>) and all-hadronic (<u>CMS-B2G-19-003</u>) channels
- Sensitive variables: m_t and m_{tW}
- Bkg. estimation from data and simulation using control regions with pass and fail ratio/ transfer function
- Using <u>PUPPI</u> for large-cone jets
- I+jets: using <u>HOTVR</u> to identify the largecone jet originating from the t quark

Pileup per particle identification (PUPPI)

Performance studied in CMS extensively in CMS-JME-18-001

PUPPI has a high pileup stability compared to CHS

Heavy object tagging with variable R (HOTVR)

• Classical tagger suffer from inefficiency at low p_T because of cone Size 0.9• DeepAK8 • DeepAK8

CMS-PAS-B2G-20-005

- Search for W' \rightarrow tb, all-hadronic
- Back-to-back topology
- Sensitive variable: m_{tb}
- Bkg. estimation from data using control regions with pass and fail ratio
- Using <u>PUPPI</u> + <u>DeepAK8-MD</u> for largecone jet

Performance studied in CMS extensively in CMS-JME-18-002

Dijet sample

Higgs boson tagging, $\epsilon_s = 50 \%$

8

DeepAK8-MD

Performance studied in CMS extensively in CMS-JME-18-002

Dijet sample

Higgs boson tagging, $\epsilon_s = 50 \%$

Anna Benecke

DeepAK8-MD

Performance studied in CMS extensively in CMS-JME-18-002

Dijet sample

Higgs boson tagging, $\epsilon_s = 50 \%$

Performance studied in CMS extensively in CMS-JME-18-002

Dijet sample

Higgs boson tagging, $\epsilon_s = 50 \%$

11

DeepAK8-MD

12

Heavy gauge boson and vector-like quarks (W' and T/B)

W

(graphic credit to Kevin C. Nash)

b

Search for $W'_{H, z} \rightarrow VLQ + q$, all-hadronic

CMS-PAS-B2G-20-002

- Sensitive variable: invariant 3 jet mass
- Bkg. estimation from data using control regions with a transfer function
- Using <u>PUPPI</u> for large-cone jets + <u>imageTop-MD</u>

imageTop-MD

Performance studied in CMS extensively in CMS-JME-18-002

Heavy gauge boson and quarks (W' and T

 10^{-2} 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 $m_{\rm T}$ [TeV]

- Search for $T \rightarrow tZ(\nu\nu)$
- Covering full range of merged, partially merged and resolved top topology
- Test different widths of the VLQ T
- Sensitive variable: transverse mass M_T
- Bkg. estimation from data and simulation using control regions with correction factors
- Using <u>PUPPI</u> for large-cone jets + substructure tagging
- Excluded at 95% CL mass hypotheses between 0.98 and 1.4 TeV depending on the width of the T

Heavy vector-like b quark partner (B)

CMS-B2G-19-005

- Search for BB → bZbZ, bHbH, bZbH, allhadronic, 6 b-jets
- Covering full range of merged, partially merged and resolved H/Z topology
- Sensitive variable: M_{BB}
- Bkg. estimation from data using control regions with a transfer function
- Using <u>PUPPI</u> for large-cone jets + <u>DoubleB</u>
- Using CHS for small-cone jets + <u>DeepJet</u>
- B excluded at 95% CL below 1570 GeV, 1390 GeV and 1450 GeV

17

Backup

- 1. Excited bottom quark (b*)
- 2. Heavy gauge boson (W')
- 3. <u>PUPPI in detail</u>
- 4. DeepAK8 in detail
- 5. HOTVR in detail

Search for an excited bottom quark (b*)

CMS-B2G-19-003

Event selection

- Search for $b^* \rightarrow tW$, all-hadronic, dijet signature
- m_{tW} > 1.2 TeV
- Top tagged: 105 < M_{SD} < 220 GeV, τ_{32} < 0.65, DeepCSV tag
- W tagged: 65 < M_{SD} < 105 GeV, τ_{21} < 0.4 (0.45)
- $|\Delta y| < 1.6 \& |\Delta \phi| > \pi/2$

QCD estimation with pass and fail control regions

$$n_{\mathrm{P}}^{\mathrm{QCD}}(i) = n_{\mathrm{F}}^{\mathrm{QCD}}(i) R_{\mathrm{P/F}}^{\mathrm{MC}}(m_{\mathrm{t}}, m_{\mathrm{tW}}) R_{\mathrm{ratio}}(m_{\mathrm{t}}, m_{\mathrm{tW}}),$$

Anna Benecke

CMS-B2G-19-003

Anna Benecke

CMS-B2G-19-003

CMS-PAS-B2G-20-010

Event selection

- Search for $b^* \rightarrow tW$, I+jets
- Single lepton trigger
- Top tagged: 140 < M_{SD} < 220 GeV, au_{32} < 0.56
- Split events in 0b, 1b and 2b-tagged category

(graphic credit to Alexander Fröhlich)

Background estimation

- Alpha method for all backgrounds except $t\bar{t}$
- $t\bar{t}$ from simulation and CR to constrain normalisation

Search for a heavy gauge boson (W')

CMS-PAS-B2G-20-005

Event selection

- >=1 AK8 jet with p_T > 550 GeV
- >= 1 AK4 jet with p_T > 550 GeV, no overlapping to AK8 jet
- Highest top scored AK8 jet is taken as top candidate
- Highest p_T AK4 jet with $\Delta \phi > \pi/2$ and ΔR

CMS-PAS-B2G-20-005

Jet	Variable	SR	VR	CR1	CR2
t	$m_{\rm SD}$	$\in [105, 210] \text{GeV}$	$\in [105, 210] \text{GeV}$	< 105 GeV	< 105 GeV
t	top quark	pass	fail	pass	fail
	tagging				
b	b tagging	pass	pass	pass	pass
Jet	Variable	SR'	VR′	CR1′	CR2′
t	$m_{\rm SD}$	$\in [105, 210] \text{GeV}$	$\in [105, 210] \text{GeV}$	< 105 GeV	< 105 GeV
t	top quark	pass	fail	pass	fail
	tagging				
b	b tagging	fail	fail	fail	fail

Pass and fail ratio for QCD multijet background estimation $t\bar{t}$ and ST from simulation

CMS-PAS-B2G-20-005

Summary Heavy gauge boson and vector-like arks (W' and T/B)

CMS-PAS-B2G-20-002

- Top tagged: 140 < M_{SD} < 220 GeV
- H tagged: $105 < M_{SD} < 140 \text{ GeV} + \text{doubleB}$
- Z tagged: 65 < M_{SD} < 105 GeV + τ_{21}
- Using <u>PUPPI</u> for large-cone jets + <u>imageTop-</u> <u>MD</u>

Summary Heavy gauge boson and vector-like quarks (W' and T/B)

CMS-PAS-B2G-20-002

Label	Tag	Discriminator	Mass	
Tight	Η	0.6 < Dbtag	$105 < m_{\rm SD}({\rm H}) < 140{\rm GeV}$	
	Ζ	$ au_{21} < 0.45$	$65 < m_{\rm SD}(Z) < 105 {\rm GeV}$	
	t	$0.9 < imageTop_{MD}$	$140 < m_{\rm SD}(t) < 220{\rm GeV}$	
Medium	edium H $0.0 < \text{Dbtag} < 0.6$		$105 < m_{\rm SD}({\rm H}) < 140{\rm GeV}$	
	Ζ	$0.45 < au_{21} < 0.6$	$65 < m_{\rm SD}(Z) < 105 {\rm GeV}$	
	t	$0.3 < imageTop_{MD} < 0.9$	$140 < m_{\rm SD}(t) < 220{\rm GeV}$	
Loose	Η	-1.0 < Dbtag < 0.0	$5 < m_{\rm SD}({\rm H}) < 30 {\rm GeV}$	
	Ζ	$0.6 < au_{21} < 1.0$	$5 < m_{\rm SD}(Z) < 30 {\rm GeV}$	
	t	$0.0 < \text{imageTop}_{\text{MD}} < 0.3$	$30 < m_{\rm SD}(t) < 65 {\rm GeV}$	

J

Summary Heavy gauge boson and vector-like quarks (W' and T/B)

CMS-PAS-B2G-20-002

Summary

PUPPI in detail

Summary

Pileup per particle identification (PUPPI)

Performance studied in CMS extensively in JME-18-001

1. Define variable α to discriminate pileup from leading vertex

$$\alpha_i = \log \sum_{j \neq i, \Delta R_{ij} < R_0} \left(\frac{p_{\mathrm{T}j}}{\Delta R_{ij}} \right)^2$$

2. Assume charged pileup has the same shape as neutral pileup

3. Use α on an event-by-event basis to calculate a per-particle weight

Pileup per particle identification (PUPPI)

Summary

Performance studied in CMS extensively in JME-18-001

PUPPI has a high pileup stability compared to CHS

PUPPI in Detail

1. Define variable α to discriminate pileup from leading vertex

2. Assume charged pileup has the same shape as neutral pileup

3. Use α on an event-by-event basis to calculate a per-particle weight

Summary

1. Define variable *α* **to discriminate pileup** from leading vertex

$$\alpha_{i} = \log \sum_{j \neq i, \Delta R_{ij} < R_{0}} \left(\frac{p_{\mathrm{T}j}}{\Delta R_{ij}}\right)^{2} \begin{cases} \text{for } |\eta_{i}| < 2.5\\ \text{for } |\eta_{i}| > 2.5 \end{cases}$$

j are charged particles from leading vertex *j* are all kinds of reconstructed particles

Anna Benecke

Summary

2. Assume charged pileup has the same shape as neutral pileup

$$\alpha_i = \log \sum_{j \neq i, \Delta R_{ij} < R_0} \left(\frac{p_{\mathrm{T}j}}{\Delta R_{ij}} \right)^2 \begin{cases} \text{for } |\eta_i| < 2.5, \\ \text{for } |\eta_i| > 2.5, \end{cases}$$

j are charged particles from leading vertex *j* are all kinds of reconstructed particles

3. Use α on an event-by-event basis to calculate a per-particle weight

1. Calculate Median and RMS of charged PU shape (blue) $\bar{\alpha}_{PU}, RMS_{PU}$

3. Use α on an event-by-event basis to calculate a per-particle weight

1. Calculate Median and RMS of charged PU shape $\bar{\alpha}_{PU}$, RMS_{PU}

2. For each particle calculate

$$\chi_i^2 = \frac{(\alpha_i - \bar{\alpha}_{PU}) |\alpha_i - \bar{\alpha}_{PU}|}{RMS_{PU}^2}$$

3. Use α on an event-by-event basis to calculate a per-particle weight

1. Calculate Median and RMS of charged PU shape $\bar{\alpha}_{PU}, RMS_{PU}$

2. For each particle calculate

$$\chi_i^2 = \frac{(\alpha_i - \bar{\alpha}_{PU}) |\alpha_i - \bar{\alpha}_{PU}|}{RMS_{PU}^2}$$

3. Assign a weight to each particle

$$w_i = F_{\chi^2, NDF=1}(\chi_i^2)$$

Hard scattering

Anna Benecke

Summary

DeepAK8 in detail

Architecture

Performance studied in CMS extensively in <u>JME-18-002</u>

Summary

HOTVR in detail

Summary Heavy object tagging with variable R (HOTVR)

- Jet cone is relevant for the " p_T threshold"
- Classical tagger suffer at low p_T

Summary Heavy object tagging with variable R (HOTVR)

Performance studied in CMS extensively in <u>JME-18-002</u>

HOTVR adapts the jet radius to the p_T of the jet

<u>Summary</u>

HOTVR in details

The full HOTVR algorithm can be summarised as follows.

- 1) If the smallest distance parameter is d_{iB} , store the pseudojet *i* as jet and remove it from the input list of pseudojets.
- 2) If the smallest distance parameter is d_{ij} and $m_{ij} \leq \mu$, combine *i* and *j*.
- 3) If the smallest distance parameter is d_{ij} and $m_{ij} > \mu$, check the mass jump criterion $\theta \cdot m_{ij} > \max[m_i, m_j]$.
 - a) If the mass jump criterion is not fulfilled, compare the masses of the two pseudojets and remove the one with the lower mass from the input list.
 - b) If the mass jump criterion is fulfilled, check the transverse momenta of the subjets i and j.
 - i) If $p_{T,i} < p_{T,sub}$ or $p_{T,j} < p_{T,sub}$, remove the respective pseudojet from the input list.
 - ii) Else, combine pseudojets i and j. Store the pseudojets i and j as subjets of the combined pseudojet. In case i or j have already subjets, associate their subjets with the combined pseudojet.
- 4) Continue with 1) until the input list of pseudojets is empty.

$$d_{ij} = \min \left[p_{\mathrm{T},i}^{2n}, p_{\mathrm{T},j}^{2n} \right] \Delta R_{ij}^2,$$

$$d_{i\mathrm{B}} = p_{\mathrm{T},i}^{2n} R_{\mathrm{eff}}^2(p_{\mathrm{T},i}),$$

$$R_{\mathrm{eff}} = \begin{cases} R_{\mathrm{min}} & \text{for } \rho/p_{\mathrm{T}} < R_{\mathrm{min}}, \\ R_{\mathrm{max}} & \text{for } \rho/p_{\mathrm{T}} > R_{\mathrm{max}}, \\ \rho/p_{\mathrm{T}} & \text{else}. \end{cases}$$

$$R_{\mathrm{eff}}(p_{\mathrm{T}}) = \frac{\rho}{p_{\mathrm{T}}}.$$

Anna Benecke

HOTVR in details

Parameter	Default	Description
R_{\min}	0.1	Minimum value of R_{eff} .
R_{\max}	1.5	Maximum value of R_{eff} .
ρ	$600{ m GeV}$	Slope of R_{eff} .
μ	$30{ m GeV}$	Mass jump threshold.
heta	0.7	Mass jump strength.
$p_{\mathrm{T,sub}}$	$30{ m GeV}$	Minimum $p_{\rm T}$ of subjets.

Table 1: Parameters of the HOTVR algorithm. The default values are given for the top-tagging mode.

ImageTop-MD in detail

ImageTop-MD architecture

Performance studied in CMS extensively in <u>JME-18-002</u>

