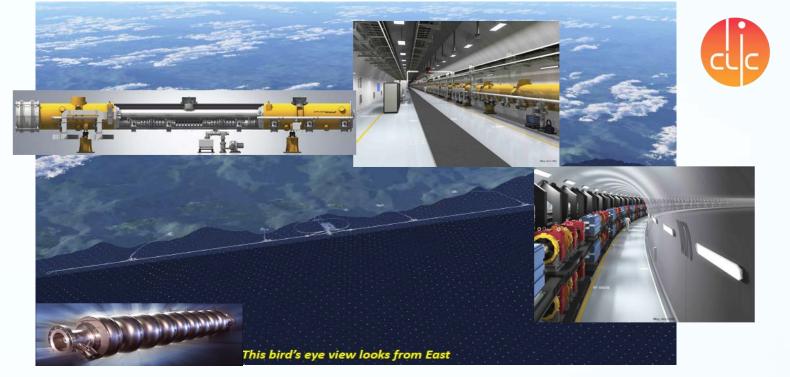
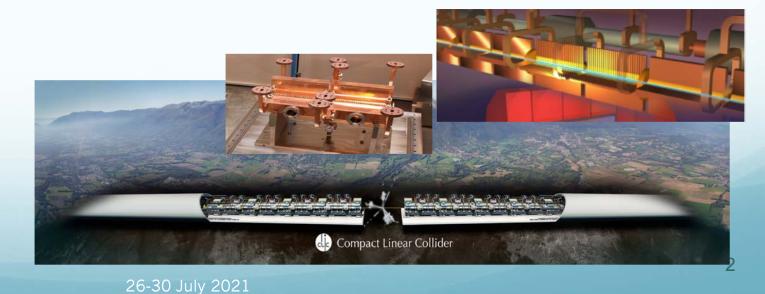





# Status and perspectives of ILC and CLIC studies




A FAILS-GOLIE On behali ILE-IDT and ELIE studies


# --ilc

### Outline

- > Why a linear Higgs factory?
- ILC-IDT: Technology update
   CLIC: Technology update

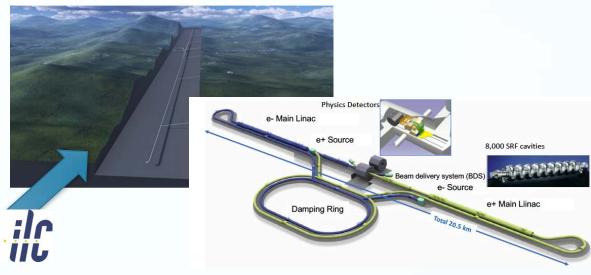


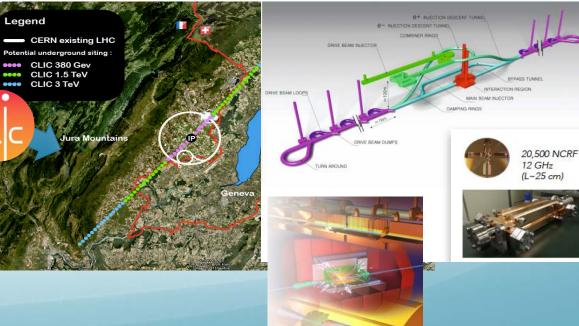
Summary and Perspectives



### **Linear Higgs factories**




Note: H. Abramowizc ESG January 2020.


| European Strategy                                                                                                                         | European Strategy Statements  |                                                                                                                                                          |                      |      |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|--|--|--|--|--|--|--|--|--|--|--|
| 6                                                                                                                                         | Guide through the statements  |                                                                                                                                                          |                      |      |  |  |  |  |  |  |  |  |  |  |  |
| 2 statements on Major developments<br>a) Maintain focus on curses ful com<br>b) Main                                                      |                               | 4 statements on Ot<br>a) Support for high                                                                                                                |                      |      |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                           | e+e- Higgs factory is highest |                                                                                                                                                          |                      |      |  |  |  |  |  |  |  |  |  |  |  |
| a) Pres<br>com                                                                                                                            | a) Pres priority in HEP       |                                                                                                                                                          |                      |      |  |  |  |  |  |  |  |  |  |  |  |
| b) Stri<br>c) Acknowledge the global nature of                                                                                            | PP research                   | 3 statements on Organisational issues                                                                                                                    |                      |      |  |  |  |  |  |  |  |  |  |  |  |
| <ol> <li>2 statements on High-priority future</li> <li>a) Higgs factory as the highest-print investigation of the technical ar</li> </ol> | iority next collider and      | a) Framework for p<br>b) Strengthen relat                                                                                                                | ssion                |      |  |  |  |  |  |  |  |  |  |  |  |
| future hadron collider at CERN<br>b) Vigorous R&D on innovative acce<br>through roadmap                                                   | lerator technologies -        | 4 statements on Environmental and societal impact<br>a) Mitigate environmental impact of particle physics<br>b) Invest in next generation of researchers |                      |      |  |  |  |  |  |  |  |  |  |  |  |
| Letters for itemizing the state<br>for identification, do not imply                                                                       |                               | <ul> <li>c) Support knowledge and technology transfer</li> <li>d) Spread cultural heritage: public engagement<br/>education and communication</li> </ul> |                      |      |  |  |  |  |  |  |  |  |  |  |  |
| <ul> <li>Technology View on Relative<br/>Timelines</li> <li>Higgs Factories</li> </ul>                                                    |                               |                                                                                                                                                          |                      |      |  |  |  |  |  |  |  |  |  |  |  |
| Timeline     ~ 5     ~ 10     ~ 15     ~ 2       Lepton Colliders – Linear and Circular:                                                  | 0 ~ 25 ~ 30 ~ 35              | Higgs Factories                                                                                                                                          | Readiness Power-Eff. | Cost |  |  |  |  |  |  |  |  |  |  |  |
| SRF-LC/CC Proto/pre-<br>series Construction Op                                                                                            | eration Upprade               | ee Linear 250 GeV                                                                                                                                        |                      |      |  |  |  |  |  |  |  |  |  |  |  |

ee Rings 240GeV/tt

µµ Collider 125 GeV

ALIC 125 GeV





26-30 July 2021

Construction

Proto/Pre-series

Note: LHC experience: NbTi, 10 T R&D started in 1980's and 8.3 T Production started in late 1990's, after ~ 15 years

Construction

Proto/pre-series Construction

Short-model R&D

Short-model R&D

Model/Proto/F

re-series

Proto/

Pre-series

Operation

Construction

Construction

Operation

Prototype/Pre-series

Operation

NRF-LC

14~16T

Nb<sub>3</sub>Sn 12~14T

Nb<sub>3</sub>Sn 9~12T

Nb<sub>3</sub>Sn

6~8T

NhTi

Hadron Collier - Circular

ilc

**EPS-HEP 2021** 

Red

Green : <LHC

IOW : 1-2 x LHC

: > 2x LHC

F1 "Technology F2 "Energy Efficiency" F3 "Cost" :

: 100-200 MW

208-400 MW

Red : > 400 MW

Readiness" :

Red

TDR

CDR

- R&D

### **Linear Higgs factories**



8,000 SRF cavities

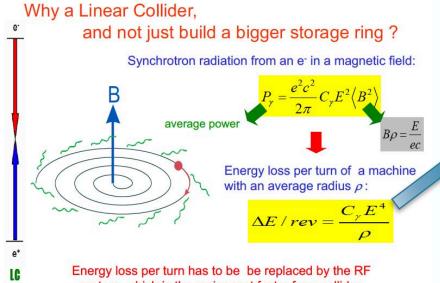
e+ Main Liinac

MAIN BEAM INJECTOR

Note: H. Abramowizc ESG January 2020.

| European Strategy                                                                                       | 2020 Str                                                                                                  | rategy Statements                                                                                                            |                                                                               |                                                                                             |                                          |                                                                     |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------|
|                                                                                                         | Guide through t                                                                                           | he statements                                                                                                                |                                                                               | and the second second                                                                       |                                          |                                                                     |
| <ul> <li>Maintain focus on successful</li> </ul>                                                        | pments from the 2013 Strategy<br>ul completion of HL-LHC upgrade<br>xaseline $v$ experiments in Japan and | 4 statements on Other essent<br>a) Support for high-impact,                                                                  | financially viable,<br>orld-wide<br>role of theory                            |                                                                                             | e- Mair                                  | Physics Detectors                                                   |
| <ul> <li>a) Preserve the leading role of</li> </ul>                                                     | <mark>derations for the 2020 update</mark><br>f CERN for success of European Pl                           | <ul> <li>d) Support for computing and</li> <li>2 statements on Synergies with</li> </ul>                                     | l software infrastructure<br>th neighbouring fields                           |                                                                                             |                                          |                                                                     |
| <ul><li>community</li><li>b) Strengthen the European Pl</li><li>c) Acknowledge the global nat</li></ul> | P ecosystem of research centres<br>rure of PP research                                                    | a) Nuclear physics – cooperat<br>b) Astroparticle – cooperatio                                                               | on with APPEC                                                                 |                                                                                             |                                          | Beam delivery system (BDS)<br>e- Source                             |
| 2 statements on High-priority<br>a) Higgs factory as the high                                           |                                                                                                           | <ul> <li>3 statements on Organisation</li> <li>a) Framework for projects in</li> <li>b) Strengthen relations with</li> </ul> | and out of Europe                                                             |                                                                                             |                                          | Damping Ring                                                        |
| inve<br>futi<br>b) Vige                                                                                 |                                                                                                           | <b>F 4</b>                                                                                                                   | act                                                                           |                                                                                             |                                          |                                                                     |
|                                                                                                         | Hidds                                                                                                     | s facto                                                                                                                      | hysics                                                                        |                                                                                             |                                          | 8+ autorov recent mann                                              |
| T                                                                                                       |                                                                                                           |                                                                                                                              |                                                                               | CERN existing LHC                                                                           |                                          | 0- INJECTION DEBOONT TUNNEL<br>COMBINER RINGS<br>DRIVE BEAM NUECTOR |
| > т, <b>t</b> e                                                                                         | echno                                                                                                     | logy is                                                                                                                      |                                                                               | Potential underground siting :<br>eeee CLIC 380 Gev<br>eeee CLIC 1.5 TeV<br>eeee CLIC 3 TeV | CLC                                      |                                                                     |
| T                                                                                                       |                                                                                                           |                                                                                                                              |                                                                               | CLUSTER                                                                                     | DRIVE BEAM                               |                                                                     |
| Timeline<br>Lepton Colliders                                                                            | rea                                                                                                       | dv                                                                                                                           | Cost                                                                          | Jura Mountains                                                                              |                                          | DRVE BEAM CUMPS                                                     |
| SRF-LOVCC                                                                                               | icu                                                                                                       | чy                                                                                                                           |                                                                               | SA NOT                                                                                      |                                          |                                                                     |
| NRF-LC PL                                                                                               |                                                                                                           | ee Rings 240GeV/tt                                                                                                           |                                                                               | Experience of the second                                                                    | Geneva                                   |                                                                     |
| 14~16T                                                                                                  |                                                                                                           | uµ Collider 125 GeV                                                                                                          | *                                                                             | EN AN I                                                                                     | A CARD                                   |                                                                     |
| 12~14T Short-model R&D Proto/Pre-series                                                                 | a second second second                                                                                    | ALIC 125 GeV                                                                                                                 | ? ?                                                                           |                                                                                             | TALK T                                   |                                                                     |
| 9~12T Model/Proto/P Construction                                                                        | Operation                                                                                                 |                                                                                                                              | logy F2 "Energy Efficiency" F3 "Cost" :                                       |                                                                                             | Autor to the<br>Discrete fill and states |                                                                     |
| 6~8T Proto/<br>NoTi Pre-series Construction                                                             | Operation Upgrade                                                                                         | Readiness"                                                                                                                   |                                                                               |                                                                                             |                                          |                                                                     |
| Note: LHC experience: NbTi, 10 T R&D started in 1980's and<br>A. tarranoto, 1965/1990pdated 1966784     | 8.3 T Production started in late 1990's, after ~ 15 years                                                 | Yellow - (<br>Red - F                                                                                                        | CDR Yellow : 200-400 MW Yellow : 1-2 x LM<br>R&D Red : > 400 MW Red : > 2x LH |                                                                                             |                                          |                                                                     |
| 26.20 1010 202                                                                                          | 1                                                                                                         |                                                                                                                              |                                                                               |                                                                                             |                                          | Aller -                                                             |

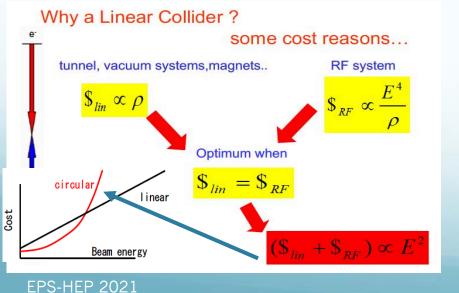
26-30 July 2021


ilc

EPS-HEP 2021

20,500 NCRF 12 GHz (L~25 cm)

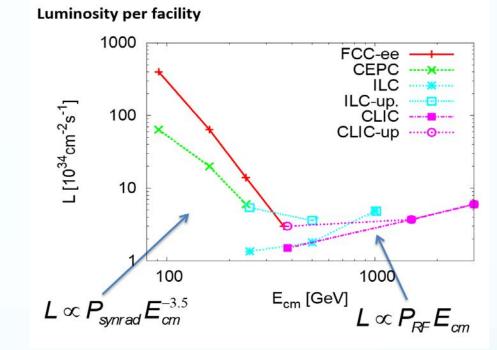
### Why a linear Higgs factory?





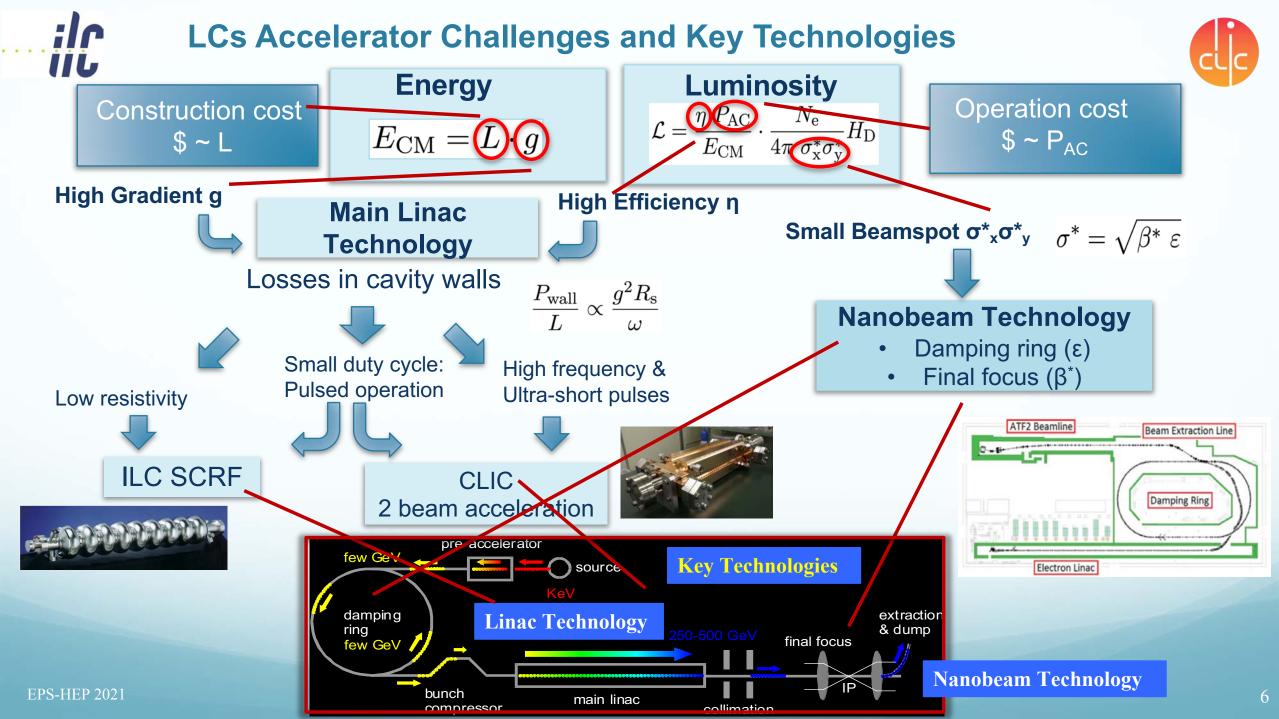

ilr

İİL


system, which is the major cost factor for a collider.



- > Energy dependence:
- At low energies circular colliders surpass
- Reduction at high energy due to SR

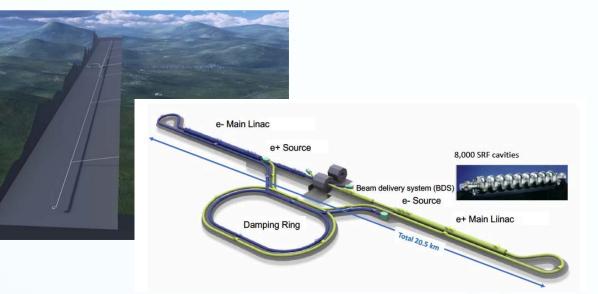

#### At high energies linear colliders excel

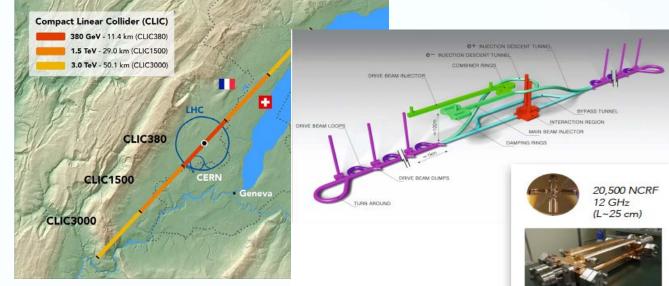
Luminosity per beam power roughly constant



#### > Others LCs advantages:

- LCs have **polarized beams** (80% e<sup>-</sup>, ILC also 30% e<sup>+</sup>), the spin of the e<sup>+</sup>e<sup>-</sup> • beam can be maintained during the acceleration and collision. This can help significantly improve measurement precision.
- **Upgradeability**: LCs can extend its collision energy by longer tunnel/ higher gradient




### ILC and CLIC in a nutshell



Two e+e- linear collider designs, starting as a Higgs factory

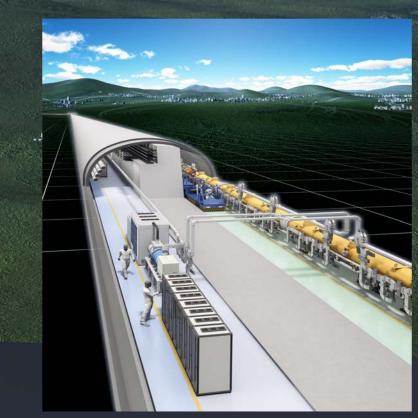




### **International Linear Collider ILC**

- Superconducting Cavities, 1.3GHz, 31.5MV/m
- Klystrons
- 250GeV CME, upgradeable to 500, 1000GeV
- L = 1.35x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> (at initial 250GeV)
- 20km length, in Tohoku / Japan
- Polarisation 80%(e-), 30%(e+)

#### EPS-HEP 2021


### **Compact Linear Collider CLIC**

- NC Copper Cavities, 12.0GHz, 72 100MV/m
- Two-beam acceleration
- 380GeV CME, upgradeable to 1500, 3000GeV
- $L = 1.50 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$  (at initial 380GeV)
- 11.4km long, at CERN / France & Switzerland
- Polarisation 80% (e-)



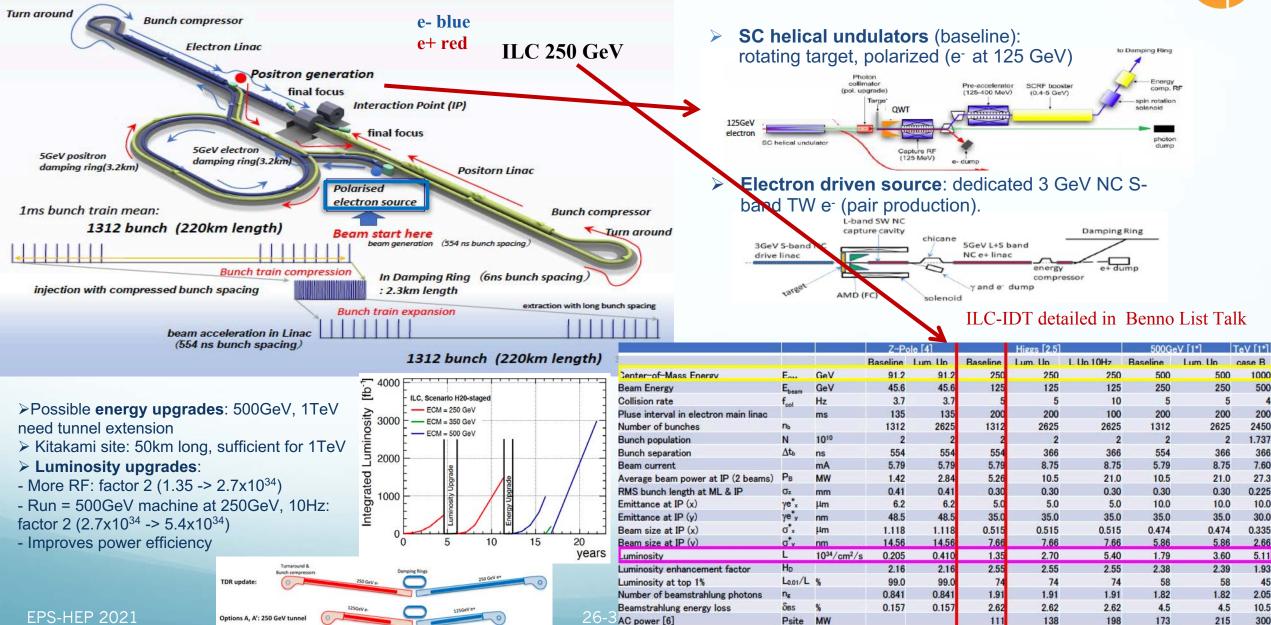
house the state of the second state of the state of the

# ILC accelerator: Techology update



http://www.linearcollider.org/

EPS-HEP 2021


## ILC parameters and beam accelerator sequence

İİĻ



40

31



Site length

20.5

Lsite

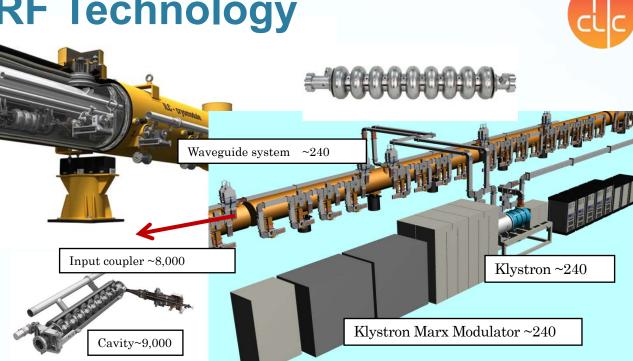
km

20.5

20.5

20.5

20.5


31



### **ILC Main Linac: SRF Technology**

- ~8000 SC 9-cell cavities: 1.3 GHz, 1.038m long, 31.5MV/m
- 9 cavities per 12m long cryomodule
- 10MW pulsed klystron per 4½ modules
- 2K operating temperature:
   4-6 cryo plants 19kW@4.5K
- Pulsed operation, 5Hz x 0.73ms (1312 bunch)
- European XFEL in operation 100 cryomodules, 800 cavities
- LCLS-II, SHINE: Under construction / planned

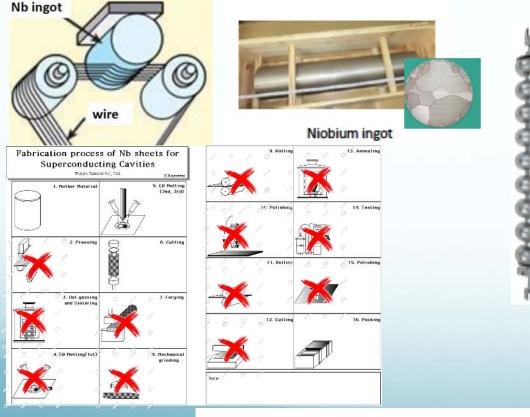




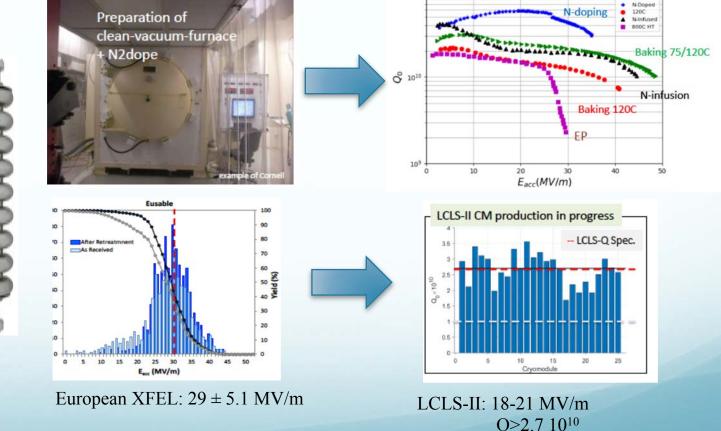
### ILC: artistic view



#### **EPS-HEP 2021**


### ILC Main Linac: Technology challenge



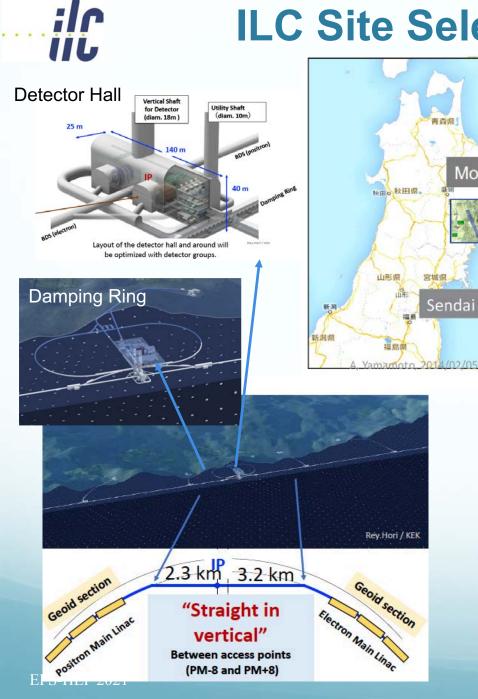

**R&D** to reduce cost fabrication and to push performance limits

### Niobium material/sheet preparation:

**Large grain** directly sliced from ingot (cost reduction), **Nb thin-film** coating on Cu based structure (HiPIMS), or Nb<sub>3</sub>Sn in Nb or Cu



SRF cavity fabrication for high-gradient (N doping well stablished), high-Q (N infusion, low-T baking) and high-yield.

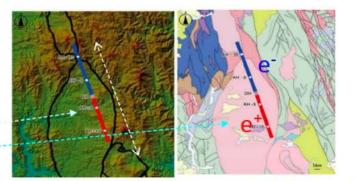



Mass production still a challenge (ILC-IDT talk from B. List)

ilC

### **ILC Site Selection and Civil Engineering**



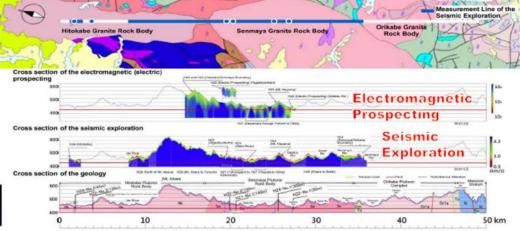



#### Kitakami mountains

#### 1 ILC Location Morioka

青森県

ILC accelerator area : inside the granite rock bodies → inside black curves (left)  $\rightarrow$  in the pink color (right)  $\rightarrow$  possible up to 50 km

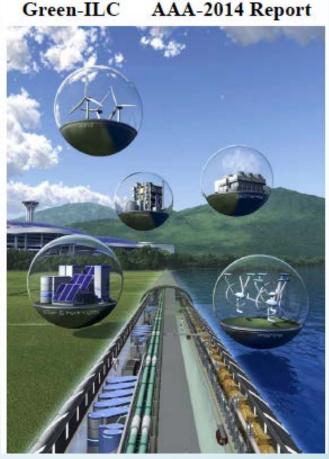



→ On-going jobs : Optimal accelerator placement, considering surface environment, land-use and land-acquisition

#### **Geological Surveys** (2)

- Electric Prospecting (crack)
- Seismic Exploration (stiffness)
- **Boring Survey**
- **Borehole Camera**
- Measurement of Initial Stress of the Ground






- $\rightarrow$  no issues from previous surveys
- → requiring : additional surveys around access tunnel head and access tunnel inside for detailed designing



# "Green ILC" and Carbon neutrality





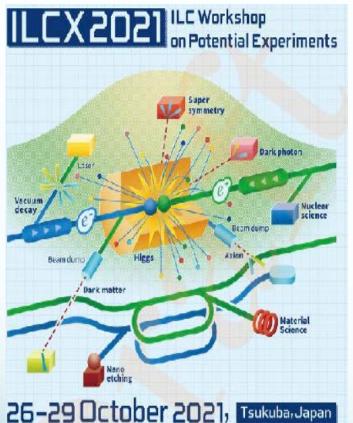
Although SRF has been adopted, the AC power consumption for ML part is <50%, what is a total of 110 MW

- "Green ILC": Past efforts include increasing the efficiency of accelerators (SC, klystron) https://green-ilc.in2p3.fr/documents/
- > Carbon neutrality: Common challenge for all future HEP accelerators. The use of SC will contribute to carbon neutrality in the future.

### Work is ongoing to study these issues



ilC



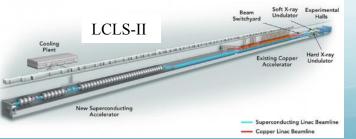


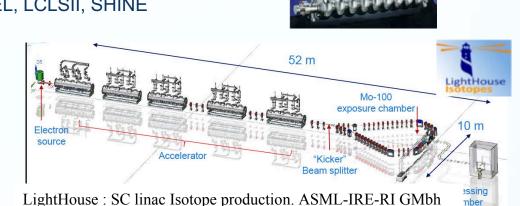

# Extending the Physics potentiality of ILC and applications of ILC technology



1.3GHz 9 cell cavity




Experiments using the main dump Experiments using Extracted beam Far detector


- ILC technology for different applications
- XFEL accelerators: EuXFEL, LCLSII, SHINE
- Medical linacs
- Industrial linacs
- etc



SCRF compact for water treatment



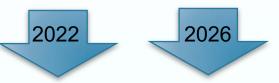








EPS-HEP 2021

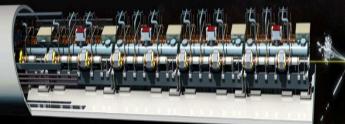

ilr

İİL





- International Development Team (IDT) prepares Pre-Lab
- 4 year Pre-Lab (hosted by KEK, Japan) phase for R&D, Engineering Design Report, Construction preparation
- > **ILC Laboratory** (international): 10 year construction phase




ILC-IDT detailed in Benno List Talk

|                                                                           | IDT  | IL   | _C Pr  | e-La  | b     | ILC Lab. |      |     |       |       |      |       |       |        |    |               |
|---------------------------------------------------------------------------|------|------|--------|-------|-------|----------|------|-----|-------|-------|------|-------|-------|--------|----|---------------|
|                                                                           | PP   | P1   | P2     | P3    | P4    | 1        | 2    | 3   | 4     | 5     | 6    | 7     | 8     | 9      | 10 | Phys.<br>Exp. |
| Preparation<br>CE/Utility, Survey, Design<br>Acc. Industrialization prep. |      |      |        |       |       |          |      |     |       |       |      |       |       |        |    |               |
| <b>Construction</b>                                                       |      |      |        |       |       |          |      |     |       |       |      |       |       |        |    |               |
| Civil Eng.                                                                | Foll | owir | ng a f | our-  | year  | ILC      | Pre- | Lab | ohase | e, IL | C co | nstru | ctior | n will | l  |               |
| Building, Utilities                                                       | cont | inue | for a  | about | t ten | year     | s.   |     |       |       |      |       |       |        |    |               |
| Acc. Systems                                                              |      |      |        |       |       |          |      |     |       |       |      |       |       |        |    |               |
| Installation                                                              |      |      |        |       |       |          |      |     |       |       |      |       |       |        |    |               |
| Commissioning                                                             |      |      |        |       |       |          |      |     |       |       |      |       |       |        |    |               |
| Physics Exp.                                                              |      |      |        |       |       |          |      |     |       |       |      |       |       |        |    |               |

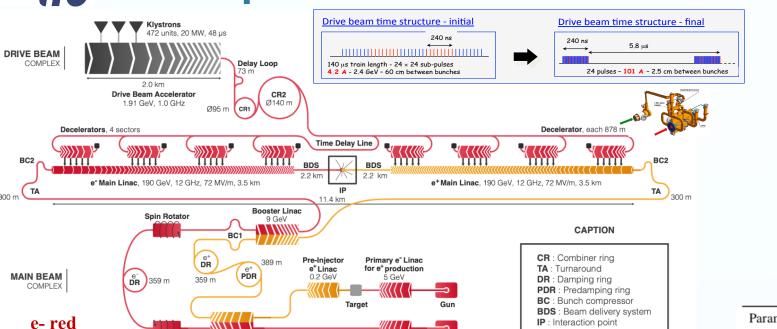


# CLIC accelerator: Technology update





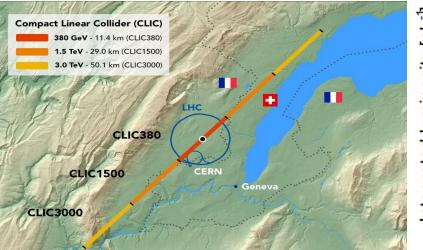
http://clic-study.web.cern.ch/




EPS-HEP 2021

26-30 July 2021

16


### **CLIC** parameters and beam accelerator sequence İİĿ



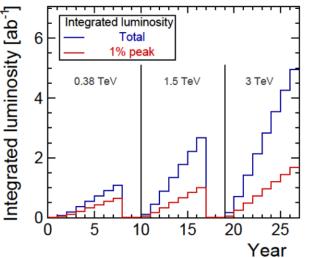
Pre-Injector

e<sup>-</sup> Linac 0.2 GeV

DC Gun



Injector Linac


2.86 GeV

Spin Rotator

BC2

e+ yellow

300 m

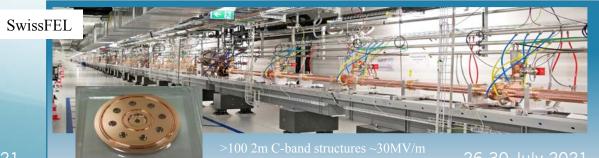


: Dump



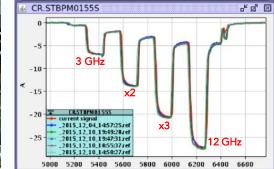


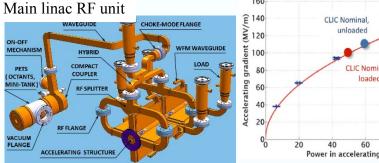
- Drive beam accelerated to ~2 GeV using 1. conventional klystrons
- 2. Intensity increased using a series of delay loops and combiner rings
- Drive beam **decelerated** and produces high-RF 3.
- Feed high-RF to the less intense main beam 4. using waveguides

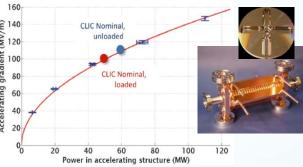

| Parameter                            | Symbol                        | Unit                                       | Stage 1 | Stage 2       | Stage 3     |
|--------------------------------------|-------------------------------|--------------------------------------------|---------|---------------|-------------|
| Centre-of-mass energy                | $\sqrt{s}$                    | GeV                                        | 380     | 1500          | 3000        |
| Repetition frequency                 | $f_{\rm rep}$                 | Hz                                         | 50      | 50            | 50          |
| Number of bunches per train          | $n_b$                         |                                            | 352     | 312           | 312         |
| Bunch separation                     | $\Delta t$                    | ns                                         | 0.5     | 0.5           | 0.5         |
| Pulse length                         | $	au_{ m RF}$                 | ns                                         | 244     | 244           | 244         |
| Accelerating gradient                | G                             | MV/m                                       | 72      | 72/100        | 72/100      |
| Total luminosity                     | L                             | $10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ | 1.5     | 3.7           | 5.9         |
| Luminosity above 99% of $\sqrt{s}$   | $\mathscr{L}_{0.01}$          | $10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ | 0.9     | 1.4           | 2           |
| Total integrated luminosity per year | $\mathscr{L}_{\mathrm{int}}$  | fb <sup>-1</sup>                           | 180     | 444           | 708         |
| Main linac tunnel length             |                               | km                                         | 11.4    | 29.0          | 50.1        |
| Number of particles per bunch        | Ν                             | 10 <sup>9</sup>                            | 5.2     | 3.7           | 3.7         |
| Bunch length                         | $\sigma_z$                    | μm                                         | 70      | 44            | 44          |
| IP beam size                         | $\sigma_x / \sigma_y$         | nm                                         | 149/2.9 | $\sim 60/1.5$ | $\sim 40/1$ |
| Normalised emittance (end of linac)  | $\varepsilon_x/\varepsilon_v$ | nm                                         | 900/20  | 660/20        | 660/20      |
| Final RMS energy spread              | ,                             | %                                          | 0.35    | 0.35          | 0.35        |
| Crossing angle (at IP)               |                               | mrad                                       | 16.5    | 20            | 20          |
|                                      |                               |                                            |         |               |             |



### **CLIC Main Linac: NCRF Technology**





- ML NC RF X band copper cavities (20,500 structures)
- Drive-beam based machine (PET structures), two beams acceleration demonstrated, CTF3 (CLIC Test Facility at CERN) program addressed all drive-beam production issues.
- Klystron-powered option also studied (high-efficiency)
- High-current drive beam bunched at 12 GHz
- Achieved 100 MV/m gradient in main-beam cavities
- X-band technology developed and verified with prototyping, test-stands, and use in smaller systems
- Two C-band XFELS (SACLA and SwissFEL the latter particularly relevant) now operational: large-scale demonstrations of normalconducting, high-frequency, low-emittance linacs







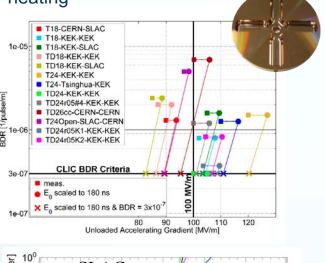








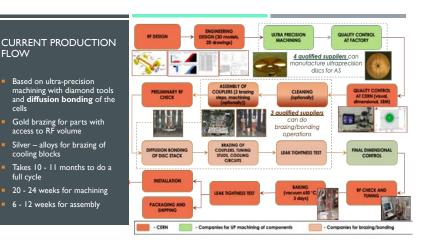

Details in PIP, DOI: http://dx.doi.org/10.23731/CYRM-2018-004

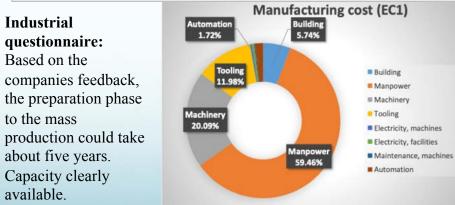

### CLIC Main Linac: Technology challenge R&D to reduce cost fabrication and to push performance limits



 Fundamental process for highfields and material dynamics
 Understanding the limits by: Field
 emission, Vacuum arcing (breakdown)
 and Fatigue due to pulsed surface
 heating

ilr

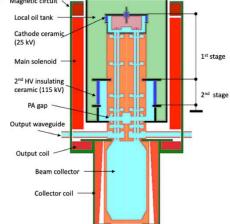

İİL




#### Probability [1/pulse/meter] **SLAC** Cu@45K Hard CuAg#3 Soft Cu Hard Cu 10-5 kdown Hard 10-6 CuAg#1 80 10<sup>-7</sup> 200 700 300 400 500 600 Peak Electric Field [MV/m]

#### > X band RF structures fabrication:

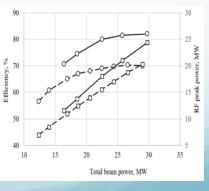
Processes, Developments (rectangular disks, brazing, halves), Fabrication capacity and Components for system.






#### High Efficiency Klystrons:

for LHC, CLIC, FCC-ee and ILC. For CLIC, this includes the L-band and X-band sources





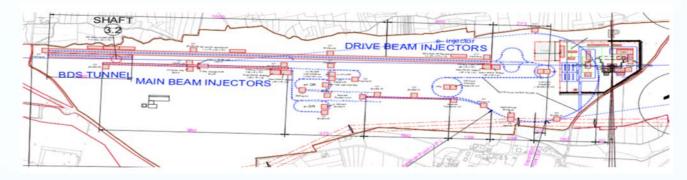

I. Syratchev, LCWS, Japan, Sendai, October 28 – November 1, 2019

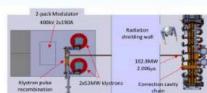
Drivebeam klystron: The klystron efficiency (circles) and the peak RF power (squares) simulated for the CLIC TS MBK (solid lines) and measured for the Canon MBK E37503 (dashed lines) vs total beam power.

https://ieeexplore.ieee.org/docu ment/9115885

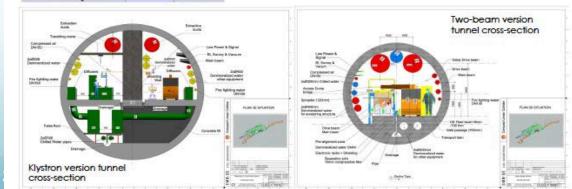


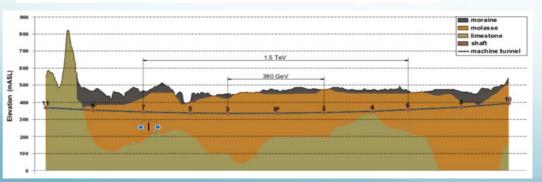
#### EPS-HEP 2021


#### Industrialization and mass production still a challenge


### **CLIC Site Selection and Civil Engineering**




Important effort within:

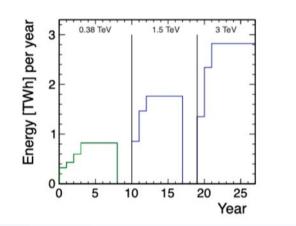

- Civil engineering
- Electrical systems
- Cooling and ventilation
- Transport, logistics and installation
- Safety, access and radiation protection systems Crucial for cost/power/schedule





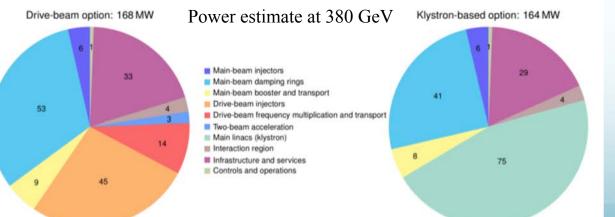
- Klystron-powered version studied and costed for 1st stage (380 GeV c.m.)
- Upgrade to 1 TeV and beyond based in any case on Two-beam scheme (klystron-based sectors re-usable with modifications)



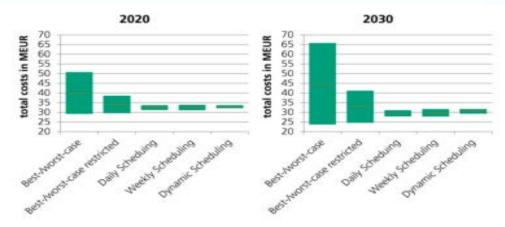



EPS-HEP 2021

# "Green CLIC" and Carbon neutrality




| Collision Energy [GeV] | Running [MW] | Standby [MW] | Off [MW] |
|------------------------|--------------|--------------|----------|
| 380                    | 168          | 25           | 9        |
| 1500                   | 364          | 38           | 13       |
| 3000                   | 589          | 46           | 17       |



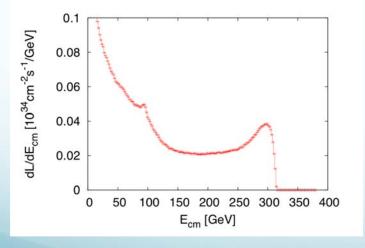

116

 Very large reductions since CDR, better estimates of nominal settings, much more optimised drivebeam complex and more efficient klystrons, injectors more optimisation, etc
 Further savings possible, main target damping ring RF and improved Lband klystrons for drivebeam



- Energy studies:
- Running when energy is cheap




Relative energy cost by no scheduling, avoiding the wintermonths (restricted), daily, weekly and dynamic scheduling. Central values of the ranges shown should be considered best estimates. The absolute cost scale will depend on price, contracts and detailed assumption about running times, but the relative cost differences indicate that significant cost-reductions could be achieved by optimizing the running schedule of CLIC to avoid high-energy cost periods (Fraunhofer)

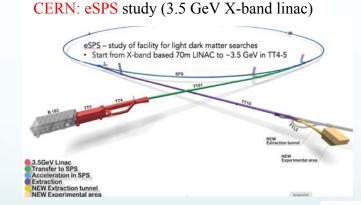
- Renewable energy (carbon footprint)
- Recovering energy

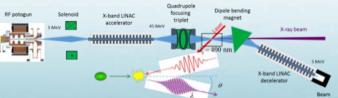
# **IC** Extending the Physics potentiality of CLIC and applications of CLIC technology

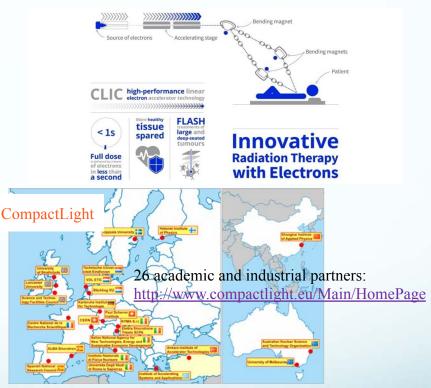


- CLIC technology for different applications
  - EU co-funded FEL design study
    - 1 GeV linac at INFN-LNF
    - Medical linacs
    - ICS
    - etc




Further work on luminosity


improvements and margins,


operation at the Z-pole and

gamma-gamma are ongoing.

performance, possible







INFN Frascati advanced acceleration facility EuPRAXIA@SPARC\_LAB

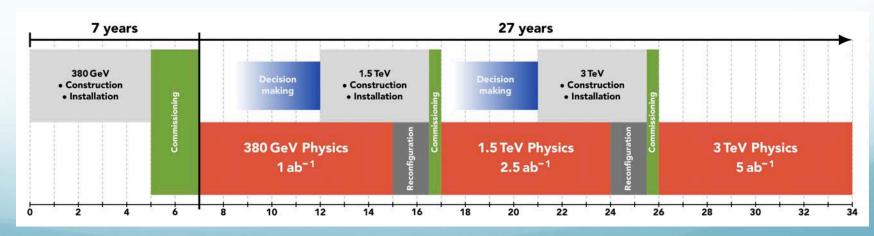
EPS-HEP 2021

Eindhoven University SMART\*LIGHT Compton Source

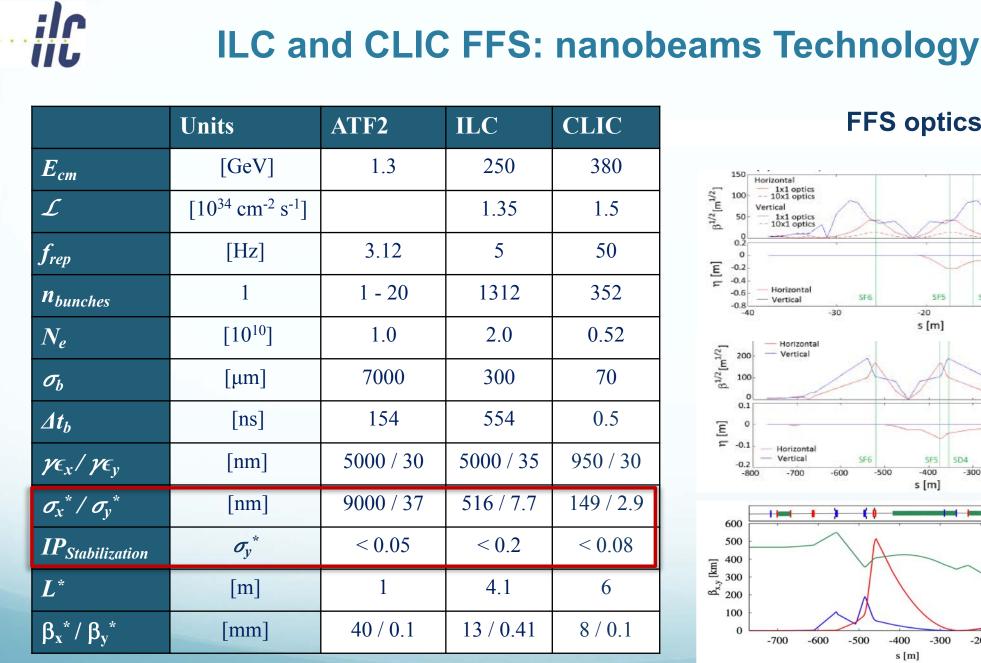


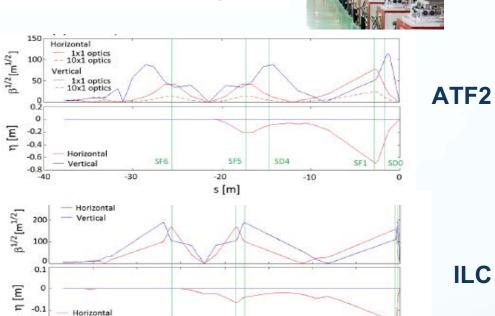
## **CLIC Timeline**

۲

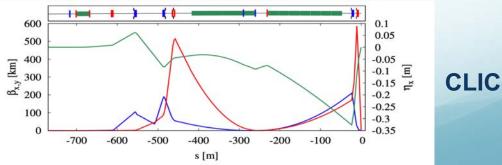



### **Project Readiness Report as a step toward a TDR – for next ESPP**


Assuming ESPP in 2026, Project Approval ~ 2028, Project (tunnel)construction can start in ~ 2030.


- Focusing on:
- The X-band technology readiness for the 380 GeV CLIC initial phase
- Optimizing the luminosity at 380 GeV
- Improving the power efficiency for both the initial phase and at high energies

- More details:
  - X-band studies: Structure manufacturability and optimized conditioning, interfaces to all connecting systems for large scale production, designs for and support of use in applications from the 1 GeV linac at LNF to medical linacs
  - Luminosity: beamdynamics studies and related hardware optimisation for nano beams from damping rings to final focus (mechanical and thermal stability, alignment, instrumentation, vacuum systems, stray field control, magnet stability, etc)
  - Improving damping ring and drive beam RF efficiency, study parameter changes to reduce power at multi-TeV energies maintaining high luminosities




#### Technology Driven Schedule with a preparation phase of ~5 years is needed before (estimated resource need for this phase is ~4% of overall project costs)





**FFS** optics



SF5

-400

s [m]

SD4

-300

-200

SF1 SDO

0

-100

Horizontal

-700

SF6

-500

-600

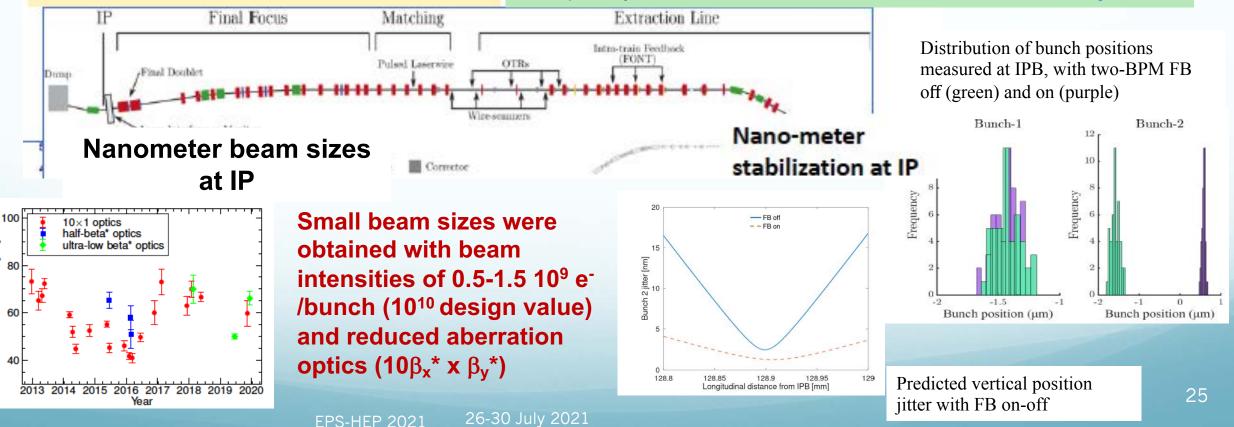
Vertical

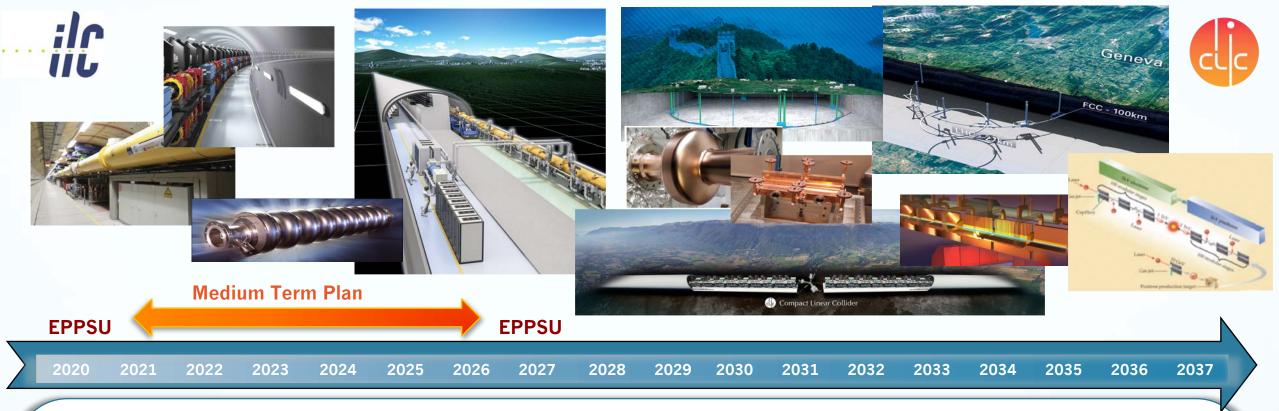
-0.2

-800

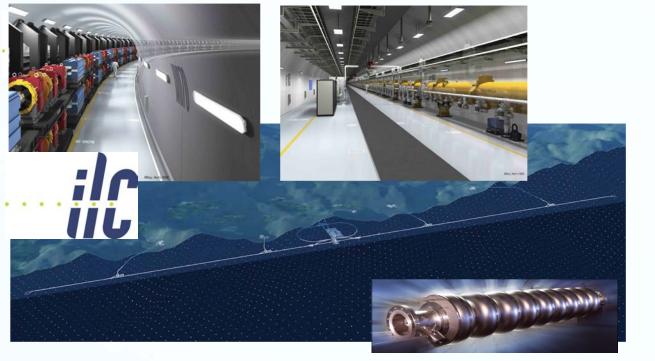
### ILC and CLIC FFS: nanobeams Technology ATF2 goals and achievements




Goal 1: Establish the ILC final focus method with same optics and comparable beamline tolerances


- ATF2 Goal : 37 nm → ILC 7.7 nm (ILC250)
  - Achieved **41 nm** (2016)

/ertical beam size [nm]


**Goal 2:** 2 nm beam stabilization at ATF2 IP, (much harder than nm stabilization in collision at ILC).

- **FB latency 133 nsec achieved** (target < 366 nsec)
- Position jitter at ATF2 IP: 41 nm (2018) (direct stabilization limited by IPBPMs resolution 20 nm). Upstream FB shows capability for 2nm stabilization. Demonstrated ILC IPFB system.





- A LC Higgs factory is ready for start up ~2035: ILC hosted in Japan and CLIC at CERN, are mature designs in both cases promoted and set up as international projects
  - The main accelerator **technologies** have been **demonstrated** (mass production still a challenge)
  - The cost and implementation time are **similar** to **LHC** (~10B\$)
  - The physics case is broad and profound, and being further developed
  - The detector concept and detector technologies R&D are well advanced
- Implementing a LC now provides a very attractive, implementable way forward, with a good match between scientific progress and further technology development – not only for LC technologies





# Thanks for your attention

Special thanks to Shin Michuzono, Steinar Stapnes, Benno List

# **Present and Future Large Accelerator projects**

In operation In construction Under study





**International Large Scale Projects** 

An uncompleted view ...



|             | EPPSU    |                 |      | EPI                   | PSU  |                         |      |                      |           |              |         |         |                        |        |                             |                       |      |      |                             |    |
|-------------|----------|-----------------|------|-----------------------|------|-------------------------|------|----------------------|-----------|--------------|---------|---------|------------------------|--------|-----------------------------|-----------------------|------|------|-----------------------------|----|
| 2018        | 2020     | 2022            | 2024 | 2026                  | 2028 | 2030                    | 2032 | 2034                 | 2036      | 2038         | 2040    | 2042    | 2044                   | 2046   | 2048                        | 2050                  | 2052 | 2054 | 2056                        |    |
| LHC<br>ATF2 |          | ESS<br>SC linad |      | <b>-LHC</b><br>ΓNb₃Tn |      | <b>CepC.</b><br>High cı |      | <b>ILC</b><br>1.3GHz | SC        |              | current |         | C <b>hh</b><br>T Nb₃Tn | n/NbTn |                             |                       |      |      | ( <b>FCCee)</b><br>₃Tn/NbTn |    |
| Super H     | KEKB     |                 | FAIR |                       |      | Z-pole                  |      | nano-<br>beam/s      |           | Z-pole<br>on | 9       | FC      | Ceh                    |        | . <b>HC (H</b> I<br>Nb₃Tn/N | <b>L-LHC)</b><br>IbTn |      | μ+μ- |                             |    |
|             |          | ATF3            |      | LBNF                  |      | ERL                     |      | 2 GHz                |           |              |         | 2.13    | -                      | Spp    | С                           |                       |      |      |                             |    |
| 2           | 6-30 Jul | y 2021          |      |                       |      | EIC                     |      | ano-<br>eam/sta      | bilizatio | n            | EPS     | S-HEP 2 | 021                    |        |                             |                       |      |      |                             | 28 |