Searches for strong production of SUSY with ATLAS

Jonathan Long On behalf of the ATLAS Collaboration

University of Illinois Urbana-Champaign

July 26th, 2021 EPS 2021

Strong SUSY at the LHC

- SUSY: additional symmetry on top of SM
 - Results in many partner particles, ideally at an LHC-reachable scale
- Many desirable properties
 - R-parity conserving SUSY→ LSP is a dark matter candidate
 - Stops cancel divergences in Higgs boson mass loops
 - High scale gauge coupling unification
- LHC is the only place for direct searches for for new heavy particles

natural SUSY

ATLAS SUSY Search Strategy

Generally searching for events with jets, missing transverse momentum (MET), and sometimes other high momentum objects.

- Today: highlights from recent searches for strongly produced SUSY (squarks/gluinos) using full Run 2 dataset: bb+MET, stop to staus, photon+MET
- We make use of mass scales, MET, event kinematics, etc. to design Signal Regions (SRs)
- Predict backgrounds based on data where possible with process enriched Control Regions (CRs)
 - and validate with nearby Validation Regions (VRs)
- Interpret with simplified models and perform additional model-independent tests

bb+MET JHEP 05 (2021) 093

- Final state with b-jets and MET, no leptons
 - Trigger on MET (require > 250 GeV)
- SRA-C defined for large to small mass splittings
 - SRA: endpoint variable (m_{cT}) to reject ttbar
 - SRB: BDT based selection (most important: min m_{τ} (jet1-4,MET), and jet1-3 p_{τ})
 - SRC: Require ISR jet and make use of soft b-tagging improvements ATLAS-CONF-2019-027 to target compressed region
 - Tags displaced vertices down to 5 GeV

 $m_{\text{CT}}^2(v_1, v_2) = [E_{\text{T}}(v_1) + E_{\text{T}}(v_2)]^2 - [\mathbf{p}_{\text{T}}(v_1) - \mathbf{p}_{\text{T}}(v_2)]^2$

More data, but especially new techniques lead to substantial increase in sensitivity

Stop to staus ATLAS-CONF-2021-008

- b-jets, hadronic taus, MET, no e/mu
 - Trigger on MET (require MET>280 GeV)
- $\geq 2\tau \geq 1b$, $1\tau \geq 2b$ channels
- Use endpoint variables and scalar sum (s_T) of tau+jet1+jet2 $p_{\scriptscriptstyle T}$
- ttbar and tW are most important backgrounds (one or two real taus)

Also includes LO

interpretations see Y. Afik

 LQ_3^d

t.b

Stop to tau results

July 26th, 2021 (EPS 2021)

Photon(s) + jets + MET

- General Gauge Mediation (GGM) inspiration
- High pT photon >145 GeV (Trigger on photon)
- MET > 250 GeV. H_T > 1600 GeV •
- Jets and MET, but no leptons
- 3 SRs targeting small to large mass splittings, optimized • for full dataset

New result!

ATLAS-CONF-2021-028

γ Backgrounds

- Backgrounds arise from processes with real and fake MET or real or fake Photons
- Primary background processes from MC normalized to CRs
 - γ +jets: invert $\Delta \phi$ (jet, MET)
 - Wγ: >=1 leptons, 0 b-jets
 - ttγ: >=1 leptons, >=1 b-jets

- Misid rate measured with Zee/ey events
- Applied to control sample selecting high p_τ electrons and vetoing photons

July 26th, 2021 (EPS 2021)

Results

July 26th, 2021 (EPS 2021)

 $\widetilde{q}\widetilde{q}$ production, $\widetilde{\chi}^0_1 \rightarrow (\gamma/Z)\widetilde{G}, \gamma + \text{jets} + E_{T}^{\text{miss}}$ final state

vs=13 TeV, 139 fb⁻¹, All limits at 95% CL

1800

 $\widetilde{g}\widetilde{g}$ production, $\widetilde{\chi}_1^0 \rightarrow (\gamma/h)\widetilde{G}, \gamma + \text{jets} + E_T^{\text{miss}}$ final state

√s=13 TeV, 139 fb⁻¹, All limits at 95% CL

2000

1800 2000

2200

2400

2200 2400 2600

m_ã [GeV]

2600

m_ã [GeV]

ATLAS Preliminary

Expected Limit (±1 o.....)

Excluded at vs=13 TeV, 36.2

Observed Limit (±1 σ^{SUSY})

1600

ATLAS Preliminary

– Expected Limit (±1 σ_{em})

Observed Limit (±1 σ^{SUSY}

m_{x̃°} [GeV]

[GeV]

"ž

2500

2000

1500

1000

500

2500

2000

1500

1000

500

1200

1400

1600

1400

July 26th, 2021 (EPS 2021)

Conclusions

- ATLAS searches for strongly produced SUSY cover a wide array of scenarios
 - Expanding and updating searches with full Run 2 dataset (139 ifb)
 - Pushing sensitivity past 1 TeV in many cases
 - Probing complex final states
- Continued consistency with Standard Model expectations
- Preparing for LHC Run 3 in parallel

Stick around for Stefano and Michael's talks on ATLAS EWK and RPV SUSY Searches, as well as our CMS colleagues

Backup

ATLAS SUSY Searches* - 95% CL Lower Limits

June 2021

$\int \mathcal{L} dt \, [\mathbf{f}\mathbf{b}^{-1}]$ Model Signature Mass limit Reference $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 0 e. µ 2-6 jets E_T^{miss} E_T^{miss} 139 [1x, 8x Degen 1.85 $m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV}$ 2010.14293 1-3 jets 36.1 ã [8× Degen.] 0.9 mono-iet $m(\tilde{q})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ 2102.10874 Searches 2-6 iets E_T^{miss} 139 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}$ 0 e.u 2.3 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 2010.14293 1.15-1.95 $m(\tilde{\chi}_{1}^{0})=1000 \, GeV$ 2010.14293 2-6 jets $m(\tilde{\chi}_{1}^{0}) < 600 \, GeV$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$ 1 e.µ 139 2.2 2101.01629 E_T^{miss} 36.1 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_{1}^{0}$ ee, µµ 2 jets 1.2 $m(\tilde{\varrho})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$ 1805.11381 Inclusive 0 e.µ 7-11 jets E_T^{mis} 139 1.97 $m(\tilde{\chi}_{1}^{0}) < 600 \, GeV$ 2008.06032 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ SS e, µ 6 jets 139 1.15 1909.08457 $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$ 0-1 e, µ 3 b $E_T^{\rm mis}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0}$ 79.8 2.25 m(X10)<200 GeV ATLAS-CONF-2018-041 SS e, µ 1.25 6 jets 139 m(g)-m(x10)=300 GeV 1909.08457 $\tilde{b}_1 \tilde{b}_1$ 0 e, µ 2b E_T^{miss} 139 1.255 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 2101.12527 0.68 10 GeV $< \Delta m(\tilde{b}_1 \tilde{X}_1^0) < 20$ GeV 2101.12527 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$ 0 e, µ 6 b E_T^{miss} E_T^{miss} 139 Forbidden 0.23-1.35 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ 1908.03122 2 b 139 2τ 0.13-0.85 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$ ATLAS-CONF-2020-031 E_T^{miss} $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ 0-1 e. µ ≥ 1 jet 139 1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ 2004.14060,2012.03799 1 e, µ 3 jets/1 b E_T^{mis} 139 Forbidden 0.65 $m(\tilde{\chi}_1^0)=500 \text{ GeV}$ 2012.03799 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ 1-2 τ 2 jets/1 b E_T^{miss} 139 m(71)=800 GeV Forbidden 1.4 ATLAS-CONF-2021-008 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\iota}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ 0 e, µ 2c E_T^{miss} E_T^{miss} 36.1 0.85 1805.01649 0 e. µ mono-jet 139 0.55 2102.10874 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ 1-2 e, µ 1 - 4 b E_T^{miss} 139 0.067-1.18 $m(\tilde{\chi}_{2}^{0}) = 500 \, \text{GeV}$ 2006.05880 $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ 1b139 3 e. µ E_T^{mis} Forbidden 0.86 $m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$ 2006.05880 Multiple ℓ /jets E_T^{miss} E_T^{miss} 2106.01676. ATLAS-CONF-2021-022 $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ 139 $\tilde{t}_{1}^{\pm}/\tilde{X}_{2}^{0}$ 0.96 $m(\tilde{\chi}_1^0)=0$, wino-bino ee, µµ ≥ 1 jet 139 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ 0.205 $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino 1911.12606 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW $2e,\mu$ $E_T^{\rm mis}$ 139 0.42 $m(\tilde{\chi}_1^0)=0$, wino-bino 1908.08215 $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh Multiple ℓ/iets $E_T^{\rm mis}$ 139 $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden 1.06 $m(\tilde{\chi}_1^0)=70$ GeV, wino-bino 2004.10894, ATLAS-CONF-2021-022 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$ 2 e.u E_T^{miss} 139 1.0 $m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1908.08215 Emiss $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$ 2τ 139 $[\tilde{\tau}_L, \tilde{\tau}_{R,L}]$ 0.16-0.3 0.12-0.39 $m(\tilde{\chi}_1^0)=0$ 1911.06660 2 e. µ 0 jets E_T^{miss} E_T^{miss} 139 $\tilde{\ell}_{\mathrm{LR}}\tilde{\ell}_{\mathrm{LR}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$ 0.7 $m(\tilde{\chi}_1^0)=0$ 1908.08215 ≥ 1 jet ee, µµ 139 0.256 $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$ 1911.12606 $\begin{array}{c} \geq 3 \ b \\ 0 \ \text{jets} \end{array} \begin{array}{c} E_T^{\text{miss}} \\ E_T^{\text{miss}} \\ \geq 2 \ \text{large jets} \ E_T^{\text{miss}} \end{array}$ $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ 0 e,µ 36.1 0.13-0.23 0.29-0.88 $BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ 1806.04030 4 e.u 139 139 0.55 2103.11684 $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$ 0 e, µ 0.45-0.93 $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$ ATLAS-CONF-2021-022 Disapp. trk E_T^{miss} 0.66 Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ 1 jet 139 Pure Wino ATLAS-CONF-2021-015 0.21 Pure higgsino ATLAS-CONF-2021-015 Stable @ R-hadron Multiple 1902.01636.1808.04095 36.1 2.0 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow q q \tilde{\chi}_1^0$ Multiple 36.1 $\tau(\tilde{g}) = 10 \text{ ns. } 0.2 \text{ nsl}$ 2.05 2.4 $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$ 1710.04901,1808.04095 Displ. lep 0.7 $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$ E_T^{miss} 139 ẽ, ũ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812 0.34 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0 \,, \tilde{\chi}_1^{\pm} {\rightarrow} Z \ell {\rightarrow} \ell \ell \ell$ 0.625 3 e, µ 139 $\tilde{I}_{1}^{+}/\tilde{X}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1 1.05 Pure Wino 2011.10543 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ 4 e.u 0 jets E_T^{miss} 139 $|\tilde{X}_{2}^{0}|$ $[\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ 0.95 1.55 m(X10)=200 GeV 2103.11684 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 4-5 large jets 36.1 Large X''... [m(X1)=200 GeV, 1100 GeV 1.3 1.9 1804.03568 $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow t b s$ Multiple 36.1 [J" =2e-4, 1e-2] 0.55 1.05 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like ATLAS-CONF-2018-003 **PV** $\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$ 139 Forbidden 0.95 > 4b $m(\tilde{\chi}_1^{\pm})=500 \text{ GeV}$ 2010.01015 2 jets + 2 b 36.7 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 0.42 0.61 1710.07171 [qq, bs] $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$ $2e,\mu$ 2b36.1 0.4-1.45 $BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ 1710.05544 [1e-10< \lambda'_1 <1e-8, 3e-10< \lambda'_2 <3e-9] 1 1 DV 136 1.0 $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$ 2003.11956 $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs, \tilde{\chi}_1^{\pm} \rightarrow bbs$ 1-2 e, µ ≥6 jets 139 0.2-0.32 Pure higgsino ATLAS-CONF-2021-007 10^{-1} *Only a selection of the available mass limits on new states or 1 Mass scale [TeV] phenomena is shown. Many of the limits are based on

simplified models, c.f. refs. for the assumptions made

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}$

bb+MET SRs and Uncertainties

Variable		SRA	CRzA	VR _{A1} ^{m_{CT}}	$VR_{A1}^{m_{bb}}$	VR _{A2} ^{m_{CT}}	$VR^{m_{bb}}_{A2}$	
Number of baseline leptons		0	2			0		
Number of high-purity leptons		-	2 SFOS			-		
$p_{\mathrm{T}}(\ell_1)$	[GeV]	-	> 27			-		
$p_{\mathrm{T}}(\ell_2)$	[GeV]	-	> 20			-		
$m_{\rm T}({\bf p}_{\rm T}^\ell, {\bf p}_{\rm T}^{\rm miss})$	[GeV]	-	> 20			-		
$m_{\ell\ell}$	[GeV]	-	[81, 101]			-		
Number of jets		∈ [2, 4]						
Number of b-tagged jets					2			
j_1 and j_2 <i>b</i> -tagged		1						
$p_{\mathrm{T}}(j_1)$	[GeV]			>	150			
$p_{\mathrm{T}}(j_2)$	[GeV]				> 50			
$p_{\mathrm{T}}(j_4)$	[GeV]				< 50			
$\min[\Delta \phi(\mathbf{p}_{1-4}^{\text{jet}}, \mathbf{p}_{T}^{\text{miss}})]$	[rad]			:	> 0.4			
$E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	> 250	< 100		>	250		
\tilde{E}_{T}^{miss}	[GeV]	-	> 250	_				
$E_{\rm T}^{\rm miss}/m_{\rm eff}$		> 0.25	-	-				
$\tilde{E}_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$		-	> 0.25	-				
m _{bb}	[GeV]	>	200	< 200 > 200 < 200 > 200			> 200	
m _{CT}	[GeV]	>	250	> 250	[150, 250]	> 250	[150, 250]	
$m_{\rm eff}$	[GeV]	>	> 500 [500, 1500] > 1500				1500	

Variable		SRB	CRzB VRzB		
Number of baseline leptons		0	2		
Number of high-purity leptons		_	2 SFOS		
$p_{\mathrm{T}}(\ell_1)$	[GeV]	-	> 27		
$p_{\mathrm{T}}(\ell_2)$	[GeV]	-	> 20		
$m_{\ell\ell}$	[GeV]	_	[76, 106]		
$m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$	[GeV]	-	> 20		
Number of jets			∈ [2,4]		
Number of <i>b</i> -tagged jets		2			
$p_{\mathrm{T}}(j_1)$	[GeV]	> 100			
$p_{\mathrm{T}}(j_2)$	[GeV]	> 50			
$\min[\Delta \phi(\mathbf{p}_{1-4}^{\text{jet}}, \mathbf{p}_{T}^{\text{miss}})]$	[rad]		> 0.4		
j_1 not <i>b</i> -tagged		-	/ / / -		
$E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	> 250	< 100		
$ ilde{E}_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	-	> 250		
m _{CT}	[GeV]		< 250		
WXGB		> 0.85	[0.3, 0.63] > 0.63		

0.5 **Relative Uncertainty** 0.45 otal MC statistical **ATLAS** 0.4 statistica $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Experimental 0.35 Theoretical 0.3 SRA SRB SRC SRD 0.25 0.2 0.15 0. 0.05 bind bin1 bin2 bin3 bin3 b1v-1 b1v-0 b1v-1 2b-0 2b-1 i-wc w-2 :t550 :t650 high-3 igh-4

Variable		SRC-2b	SRC-1b1v	SRC-0b1v	VRC-2b	VRC-1b1v	VRC-0b1v		
Number of jets	∈ [2, 5]								
j_1 not <i>b</i> -tagged					1				
Number of baseline leptons					0				
Number of <i>b</i> -tagged jets		≥ 2	1	0	≥ 2	1	0		
N _{vtx}		≥ 0	≥ 1	≥ 1	≥ 0	≥ 1	≥ 1		
m _{vtx}	[GeV]	-	> 0.6	> 1.5	-	> 0.6	> 1.5		
$p_{\mathrm{T}}^{\mathrm{vtx}}$	[GeV]	-	> 3	> 5	-	> 3	> 5		
$p_{\mathrm{T}}(j_1)$	[GeV]	> 500	> 400	> 400	< 500	> 400	> 400		
$E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	> 500	> 400	> 400	< 500	> 400	> 400		
H _{T;3}	[GeV]	-	< 80	< 80	-	< 80	< 80		
Я		> 0.80	> 0.86	-	[0.8, 0.9]	> 0.86	-		
m_{jj}	[GeV]	> 250	> 250	-	[150, 250]	> 250	-		
$\Delta \phi(j_1, b_1)$	[rad]	-	> 2.2	-	-	< 2.2	-		
$\Delta \phi(j_1, \text{vtx})$	[rad]	-	-	> 2.2	-	_	< 2.2		
$\eta_{ m vtx}$		-	< 1.2	< 1.2	-	> 1.2	> 1.2		

bb+MET Model Independent Tests

Table 7: Left to right: SM expectation from background-only fit for the model-independent regions, 95% CL upper limits on the visible cross-section ($\langle \epsilon \sigma \rangle_{obs}^{95}$), on the observed (S_{obs}^{95}) and expected (S_{exp}^{95}) number of signal events. The last two columns indicate the CL_B value, i.e. the confidence level observed for the background-only hypothesis, and the discovery *p*-value (p(s = 0)) capped at a value of 0.5.

Signal channel	Obs.	SM exp.	$\langle \epsilon \sigma \rangle_{ m obs}^{95}$ [fb]	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	CL_B	$p(s=0)\left(Z\right)$
SRAmct250i	552	555 ± 75	0.94	131	133^{+47}_{-35}	0.48	0.49 (0.03)
SRAmct350i	104	120 ± 16	0.17	24	32_{-9}^{+8}	0.19	0.5 (0)
SRAmct450i	23	27.1 ± 3.8	0.06	8.7	$12.3^{+5.5}_{-3.7}$	0.17	0.5 (0)
SRAmct550i	7	10.4 ± 1.7	0.04	5.6	$8.1^{+3.9}_{-2.3}$	0.14	0.5 (0)
SRAmct650i	8	5.6 ± 1.4	0.06	8.5	$6.7^{+\overline{3}.4}_{-2.0}$	0.73	0.24 (0.72)
SRB	22	20.6 ± 4.6	0.11	15.3	$14.8_{-3.2}^{+5.2}$	0.54	0.40 (0.26)
SRC-2b	58	44.4 ± 5.8	0.22	30.3	$20.7^{+8.1}_{-5.6}$	0.88	0.09 (1.33)
SRC-1b1v	43	51 ± 10	0.13	17.6	$21.2^{+8.2}_{-5.8}$	0.28	0.5 (0)
SRC-0b1v	151	148 ± 25	0.37	51	50^{+18}_{-13}	0.54	0.48 (0.2)
SRD-low	497	381 ± 76	1.8	250	155_{-60}^{+65}	0.91	0.07 (1.48)
SRD-high	320	242 ± 66	1.4	195	140_{-44}^{+48}	0.82	0.13 (1.13)

Soft b-tagging ATLAS-CONF-2019-027

Stop to stau SRs

Table 2: Preselection of the di-tau and single-tau channels.

	Di-tau preselection Single-tau preselection							
-	E							
	At least two jets							
_		At least one	e <i>b</i> -tagged jet					
_	At least two hadronic tau candidates Exactly one hadronic tau candidate At least two <i>b</i> -tagged jets							
Variable	CR $t\bar{t}$ (2 real τ)	CR $t\bar{t}$ (1 real τ) VR $t\bar{t}$ (2 real τ) VR $t\bar{t}$ (1 real)	τ) SR			
E_{π}^{miss}					> 280 GeV			
$OS(\tau_1, \tau_2)$	1		1	_	1			
$m_{\mathrm{T2}}(au_1, au_2)$	< 35 GeV	< 35 GeV	[35, 70] GeV	[35, 70] GeV	$V > 70 \mathrm{GeV}$			
$m_{ m vis}(au_1, au_2)$	> 50 GeV	> 50 GeV	—	—	—			
$m_{ m T}(au_1)$	> 50 GeV	< 50 GeV	> 70 GeV	< 70 GeV	—			
Variable	CR $t\bar{t}$ (1 real τ)	CR single top	VR $t\bar{t}$ (1 real τ)	VR single top	SR			
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 280 GeV	> 280 GeV	> 280 GeV	> 280 GeV	> 280 GeV			
s _T	[500, 600] GeV	_	> 600 GeV		> 800(600) GeV			
$\sum m_{\rm T}(b_{1,2})$	[600, 700] GeV	> 800 GeV	[600, 700] GeV	> 800 GeV	> 700 GeV			
$m_{ m T}(au)$		< 50 GeV	—	[50, 150] GeV	> 300(150) GeV			
$p_{\mathrm{T}}(au)$		> 80 GeV		> 80 GeV	— (binned)			

Stop to Stau Uncertainties and Model Independent Tests

Systematic uncertainty	Di-tau SR	Single-tau one-bin SR	Single-tau multi-bin SR
Total	25 %	17 %	17 %
Jet-related	19 %	4.2 %	3.9 %
Tau-related	4.7 %	5.5 %	4.3 %
Other experimental	3.7 %	1.0 %	0.8 %
Theoretical modeling	13 %	17 %	19 %
MC statistics	12 %	7.5 %	4.4 %
Normalization factors	8.8~%	15 %	16 %
Luminosity	0.8 %	0.5 %	0.4 %

Signal channel	$\langle A\epsilon\sigma\rangle^{95}_{ m obs}$ [fb]	$S_{\rm obs}^{95}$	S_{\exp}^{95}	CL_b	$p(s=0) \ (Z)$
Di-tau SR	0.03	4.1	$5.3^{+2.2}_{-1.5}$	0.18	0.50 (0.0)
Single-tau one-bin SR	0.06	8.2	$5.1^{+2.1}_{-1.3}$	0.91	0.08 (1.37)

Photon+Jets+Met Signal Regions and Uncertainties

	SRL	SRM	SRH
N _{photons}	≥ 1	≥ 1	≥ 1
$p_{\mathrm{T}}^{\mathrm{leading}-\gamma}$	> 145 GeV	> 300 GeV	> 400 GeV
N _{leptons}	0	0	0
N _{jets}	≥ 5	≥ 5	≥ 3
$\Delta \phi$ (jet, $E_{\mathrm{T}}^{\mathrm{miss}}$)	> 0.4	> 0.4	> 0.4
$\Delta \phi(\gamma, E_{ m T}^{ m miss})$	> 0.4	> 0.4	> 0.4
$E_{\rm T}^{\rm miss}$	> 250 GeV	> 300 GeV	> 600 GeV
H_{T}	> 2000 GeV	> 1600 GeV	> 1600 GeV
R_{T}^4	< 0.90	< 0.90	-

	SRL [%]	SRM [%]	SRH [%]
Total (stat. + syst.) uncertainty	28	25	17
Statistical uncertainty	20	15	12
Jet energy scale and resolution	18	19	4.1
b-tagging calibration	3.2	4.3	3.6
Jet fakes	2.1	2.5	2.3
MC theory	3.6	3.1	10
Electron fakes	1.4	1.9	< 1
Electron/photon energy resolution and scale	5.5	1.1	4.1
Muon reconstruction and identification	2.6	1.8	< 1
Photon ID and isolation	2.6	2.1	1.1
Pile-up reweighting	< 1	1.2	1.0
$E_{\rm T}^{\rm miss}$ soft-term scale and resolution	< 1	< 1	< 1

$$egin{aligned} \mathcal{H}_{\mathrm{T}} &= p_{\mathrm{T}}^{\mathrm{leading}\gamma} + \sum_{\mathrm{jets}} p_{\mathrm{T}}^{i} \ \Delta \phi(\mathrm{jet}, E_{\mathrm{T}}^{\mathrm{miss}}) &= \min(\Delta \phi(j_{1}, E_{\mathrm{T}}^{\mathrm{miss}}), \Delta \phi(j_{2}, E_{\mathrm{T}}^{\mathrm{miss}})) \ R_{\mathrm{T}}^{4} &= rac{\sum_{i=1}^{4} p_{\mathrm{T}}^{i}}{\sum_{i} p_{\mathrm{T}}^{j}} \end{aligned}$$

Jets+MET JHEP 02 (2021) 143

July 26th, 2021 (EPS 2021)

- Several jets and MET, no leptons (Trigger on MET)
- Traditional multi-bin fit and BDT for models with intermediate charginos
 - Single bin regions for model independent tests (binned in N jets and m_{eff})
- Major backgrounds normalized to control regions
 - Zvv from y+jets (y treated as MET)
 - Multi-jet from regions with jet close to MET
 - ttbar and W+jets from one-lepton regions with or without a b-tag

Data

SM Total

tt(+EW) & single

Z+jets W+jets

ATLAS

s=13TeV 139 fb

Results

