Constraining challenging regions of the SUSY parameter space with the CMS experiment

EPS-HEP Conference 2021

<u>P.E. Meiring</u> (UZH) On behalf of the CMS Collaboration

Introduction

- No hint yet of New Physics at the Electroweak scale
 → <u>Strong constraints</u> on SUSY particle masses
- Traditional strategy of SUSY searches:
 - Search in events with high p_T^{miss} and high p_T^{vis}
- Not all phase-space covered
 - \rightarrow SUSY could still hide in corners of phase-space!
- Unconventional signatures \rightarrow experimental challenges:
 - Particle reconstruction/identification
 - Process modeling
 - Event selection (online/offline)

EWK SUSY Strong SUSY Strong SUSY Compressed Higgsinos Light Stops in "Top Corridor" R-parity Violating Stops Challenge: Discrimination between signal and kinematically similar background Constrain the shape of a multivariate score from data

2

Natural SUSY most elegant solution to the Hierarchy Problem
 → Suggests light Higgsinos (~m_H) with small mass-splittings

Accessible at LHC! Soft visible decay products

- Moderate p_T^{miss} and soft leptons \rightarrow No handle to select events online!
 - Require ISR jet \rightarrow induce additional p_T^{miss}
 - Designed dedicated soft $\mu\mu + p_T^{\text{miss}}$ trigger

• <u>More challenges</u>:

Ο

- \circ Weak production \rightarrow Low cross-section
- Tail of p_T^{miss} distribution \rightarrow Low statistics
 - Soft leptons \rightarrow Many non-prompt lepton candidates

 P_2

- Main background from non prompt leptons
 - Rely on data: Tight-to-loose method using fake rate (FR)

How to define Loose and Tight ID for <u>soft leptons</u>?

- <u>Soft muons (electrons)</u>: $3.5(5) < p_T < 30 \text{ GeV}$
 - Standard lepton ID tuned for harder objects \rightarrow inadequate! Ο
- Customized Loose/Tight lepton definition
 - **Absolute isolation** (Iso_{abs}) Ο
 - Energy sum of particles in $\Delta R < 0.3$
 - **Relative isolation** (Iso_{rel}) Ο
 - $Iso_{rel} = Iso_{abs} / lepton p_T$
 - Tight cut for softest leptons
 - 3D impact parameter & significance Ο
 - Reduces non prompt contamination \rightarrow improves s/b
 - **Electron MVA ID** Ο
 - \mathbf{p}_{T} dependent working points

- Important: Jet flavor composition in Measurement Region not same as in Application / Signal Region!
 - \rightarrow <u>Flavor-independence</u> of FR established by careful tuning

- Soft muons (electrons): $3.5(5) < p_T < 30 \text{ GeV}$
 - \circ Standard lepton ID tuned for harder objects \rightarrow inadequate!
- Customized Loose/Tight lepton definition
 - Absolute isolation (Iso_{abs})
 - Energy sum of particles in $\Delta R < 0.3$
 - Relative isolation (Iso_{rel})
 - $Iso_{rel} = Iso_{abs} / lepton p_T$
 - Tight cut for softest leptons
 - 3D impact parameter & significance
 - **Reduces non prompt contamination** \rightarrow **improves s/b**
 - Electron MVA ID
 - p_T dependent working points

- Important: Jet flavor composition in Measurement Region not same as in Application / Signal Region!
 - \rightarrow <u>Flavor-independence</u> of FR established by careful tuning
- Yet another challenge!
 - Low statistics
 - Method attributes negative weights \rightarrow Loss of statistical power

Large uncertainties make fully data-driven estimate unsuitable!

- Data-driven Tight-To-Loose method modified (details in backup)
 - Both data and MC used \rightarrow <u>New *semi-data-driven*</u> estimation \rightarrow Transfer factor from data
 - \rightarrow Non-prompt m_{II} shapes from MC templates (large statistics)
 - <u>Better shape agreement</u> and <u>smaller uncertainties</u>!
- Final fit performed in bins of p_T^{miss} and m_{II} $\rightarrow m_{II}$ as proxy for Δm (NLSP, LSP): good discriminator
- Exclusion limits of Higgsino Simplified Model
 - \circ 215 GeV for $\Delta m = 7.5$ GeV
 - $\circ \quad 150 \text{ GeV for } \Delta m = 3 \quad \text{GeV}$
 - \rightarrow <u>Strong limits</u> down to $\Delta m = 3$ GeV!

CMS-PAS-SUS-18-004

Light Stops in Top Corridor

- SUSY hidden in the Top Corridor? $\hat{(t)} = m(N1) \approx m(t)$
 - $\circ \qquad m(t) m(N1) \simeq m(t)$
- **Pair produced stops** in Top Corridor implies:
 - Stable LSP neutralino as DM candidate
 - Uncovered phase-space, within reach of LHC!
- Phase-space **<u>particularly challenging</u>** if stops are light (<300 GeV)!
 - \rightarrow Final states very similar to SM tt + low p_T^{miss}
 - \rightarrow Signal acceptance strongly varying
- CMS analysis dedicated to Top Corridor with full Run 2 data
 - 2 opposite sign leptons
 - $\circ \geq 2$ (b-)jets
 - \circ $p_T^{miss} > 50 \text{ GeV}$

How to distinguish signal from kinematically similar SM background?

Light Stops in Top Corridor

- 90% of background in SR is <u>irreducible SM tt</u>
 → Very similar to signal!
- Maximally exploit differences of many kinematic variables
 → Deep Neural Network (DNN)
- Signal acceptance strongly varying in Top Corridor

 \rightarrow <u>Discrimination power differs with</u> ($\mathbf{m}_{stop}, \mathbf{m}_{LSP}$) !

- m_{stop} and m_{LSP} included as input \rightarrow parametric DNN
 - Maximizes discrimination power per mass-hypothesis
 - Randomly assigned to background events
- Good discrimination observed at large DNN score!

Light Stops in Top Corridor

- DNN score: single variable with <u>maximum shape difference</u>
 → Fit variable for signal extraction!
- Other backgrounds (MC):
 - tW, DY, non-prompt, ttV, VV
- Simultaneous fit to data performed with DNN scores in 9 channels
 - Year: 2016 / 2017 / 2018
 - $\circ \qquad \text{Lepton flavors: } ee \ / \ e\mu \ / \ \mu\mu$
- Result included in the legacy **Run 2 CMS stop combination** analysis → Talk by Giulia Collura

Light stops in Top Corridor excluded

- Several SUSY theories predict **R-parity violation** (RPV)
 - <u>Unstable LSPs</u> \rightarrow decay to SM particles (no high p_T^{miss} signature) !

tt+jets dominant

background!

- **RPV** + **stop pair production** \rightarrow Final states with:
 - Two SM top-particles
 - <u>high jet multiplicity (≥10)!</u>
 - N_{jets} poorly described by MC → Fit to data \circ But no signal-free CR possible!
- NN trained to discriminate <u>signal</u> from <u>tt+jets</u>

 Extract N_{jets} shape from low NN score region
 S_{NN} must be <u>independent</u> of N_{jets}

- Two Neural Networks combined:
 - NN1: Classify events as signal or tt+jets background
 - NN2: Predict N_{jets}

<u>Gradient reversal</u> (GR) penalizes predictive power in N_{iets}!

- GR also used by other NN-based taggers
 - Example: Jet mass decorrelation in <u>DeepAK8</u> jet classifier
- Inputs to the network:
 - \circ 4-vectors of 7 highest p_T jets and lepton
 - Jet energy-momentum tensor eigenvalues
 - Jet angular variables

arXiv :1409.7495

feature extractor $G_f(\cdot; \theta_f)$

forwardprop

 ∂L_u

backprop (and produced derivatives)

Schematic of gradient reversal

 \square domain label d

loss La

- Gradient reversal cures dependency of N_{iets} and S_{NN} \rightarrow Same N_{jets} shape in all S_{NN} bins!
- Simultaneous fit of N_{iets} in each S_{NN} bin, using fit components:
 - tt+jets (90%)
 - QCD
 - $\circ \quad tt+X \qquad \longrightarrow Simulation$
 - Other backgrounds (tW, VV, etc.) \rightarrow Simulation
 - $\circ \quad \text{Signal} \qquad \quad \rightarrow \text{Simulation}$
- Exclusion limits in **benchmark RPV model**:
 - $m_{stop} < 670 \text{ GeV excluded}$ (Even without requiring large p_T^{miss} !)

Most powerful limits ever set!

arXiv: 2102.06976

Summary

- Wide range of CMS analyses exploring corners of SUSY parameter space
- More <u>unconventional signatures</u> with increasing experimental challenges!
 - Compressed Higgsinos

 \rightarrow Soft lepton identification and non-prompt background estimation

• Light Stop pairs in the Top Corridor

 \rightarrow Discrimination of signal from nearly identical background

• R-parity violating Stops

 \rightarrow Constraining the shape of a multivariate score from data

- Many searches with <u>improved and innovative analysis strategies</u> anticipated
 - Long-lived SUSY searches in Run 3!
 - \rightarrow New Physics parallel session on Tuesday!

Back-up

Semi-data-driven non-prompt estimation

- Fake rate measured in QCD enriched Measurement region (MR)
- Application Region (AR) divided into "side-bands" depending on nLeptons passing Loose ID but failing Tight ID
 - Per side-band a scale factor (SF) is derived as:

Tight ID

.oose ID

SR

AR

MR

Example distributions (2016 MC) of input variables of the NN

Jet momentum tensor eigenvalues quantify the "flow" of energy and sphericity of the event. They are eigenvalues of the tensor defined as:

$$S^{\alpha,\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{j} |p_{j}|^{2}}$$

Fox-Wolfram moments account for momenta and angles of the 7 highest p_T jets. Hence, a measure of the "event shape". Defined as:

B-number-violating UDD coupling Decay via off-shell squark

$$H_l = \sum_{i,j} |p_i| |p_j| P_l(\cos \theta_{ij})$$

FWM4

• After gradient reversal in the NN, only residual dependencies of N_{iets} and S_{NN} remain

 \rightarrow Edges of the S_{NN} bins are adjusted per-N_{iets} to maximize signal significance while requiring equal tt+jets background fractions in each N_{iets} bin given a S_{NN} bin.

Signal significance maximized with metric:

$$\sum_{N_{\text{jets}}=7}^{12} \sum_{S_{NN,i=1}}^{4} N_{\text{sig}} / \sqrt{N_{t\bar{t}} + (0.20 \times N_{t\bar{t}})^2 + N_{\text{QCD}} + (0.20 \times N_{\text{QCD}})^2}$$

 \rightarrow Also a dedicated systematic unc. applied

• During the final simultaneous fit, the tt+jets N_{iets} shape is parametrized as

$$R(i) = a_{2} + \left[\frac{(a_{1} - a_{2})^{i-7}}{(a_{0} - a_{2})^{i-9}}\right]^{1/2}$$

where $i = N_{\text{jets}}, a_{0} = \frac{M_{8}}{M_{7}}, a_{1} = \frac{M_{10}}{M_{9}}, a_{2} = \lim_{x \to \infty} \frac{M(x+1)}{M(x)}$

and M_i is the number of events with N_{jets} =i

Analyses selections (Compressed Higgsinos)

Table 1: Definition of the MET bins of the SRs.	The boundaries (in	GeV) of $p_{\rm T}^{\rm miss}$	and $p_{\rm T}^{\rm miss, corr}$
of every bin are described.			, 1

Search Region	Lov	w MET	Med MET	High MET	Ultra MET
	$p_{\rm T}^{\rm miss}$	$p_{\mathrm{T}}^{\mathrm{miss,corr}}$	$p_{\mathrm{T}}^{\mathrm{miss,corr}}$	$p_{\rm T}^{\rm miss, corr}$	$p_{\mathrm{T}}^{\mathrm{miss,corr}}$
2ℓ Ewk	> 125	[125,200]	[200, 240]	[240, 290]	> 290
2ℓ Stop	> 125	[125, 200]	[200, 290]	[290, 340]	> 340
3ℓ Ewk	> 125	[125, 200]		> 200	

Table 2: List of an criteria that events must satisfy in order to be selected in one of the SKS.						
Variable	2ℓ Ewk		2ℓ Stop		3ℓ Ewk	
Turnote	Low	Med/High/Ultra	Low	Med/High/Ultra	Low	Med/High/Ultra
N _{lep}	2	2	2	2	3	3
$p_{\rm T}$ (ℓ_1) [GeV] for μ (e)	[5,30]	[3.5(5),30]	[5,30]	[3.5(5),30]	[5,30]	[3.5(5),30]
$p_{\rm T}$ (ℓ_2) [GeV] for μ (e)	[5,30]	[3.5(5),30]	[5,30]	[3.5(5),30]	[5,30]	[3.5(5),30]
$p_{\rm T}$ (ℓ_3) [GeV] for μ (e)	-	_	-	-	[5,30]	[3.5(5),30]
1 OS pair	1	\checkmark	~	\checkmark	~	\checkmark
1 OSSF pair	1	\checkmark	-	-	~	\checkmark
$M(\ell\ell)_{SFOS}$ ($M(\ell\ell)_{SFOS}^{min}$ in 3ℓ) [GeV]	[4,50]	[1,50]	[4,50]	[1,50]	[4,50]	[1,50]
$M(\ell\ell)_{SFOS}$ ($M(\ell\ell)_{SFOS}^{min}$ in 3ℓ) [GeV]		veto[9,10.5]	a ta sa catal	veto[9,10.5]		veto[9,10.5]
$M(\ell\ell)_{SFOS}$ ($M(\ell\ell)_{SFOS}^{min}$ in 3ℓ) [GeV]		veto[3,3.2]		veto[3,3.2]		veto[3,3.2]
$M(\ell \ell)_{SFAS}^{max}(AS=any sign) [GeV]$	-	-	-	-		<60
$p_{\rm T}(\ell\ell)$ [GeV]		> 3		> 3		> 3
$M_T(\ell_i, p_T^{\text{miss}})$ [GeV] (<i>i</i> = 1, 2)		< 70		-		-
$\Delta R(\ell \ell)_{ij}$ (i,j=1,2,3)	-	>0.3	-	>0.3	-	>0.3
p_T ^{miss} [GeV]		>125		>125		>125
p _T ^{miss,corr} [GeV]		>125		>125		>125
H _T [GeV]		> 100		> 100		> 100
$p_{\rm T}^{\rm miss}/H_{\rm T}$		[2/3,1.4]		[2/3,1.4]		[2/3,1.4]
Jet ID tight WP for leading jet		\checkmark		\checkmark		~
$N_b(p_T > 25 \text{ GeV})$		=0		=0		=0
$M_{\tau\tau}$		veto[0,160]		veto[0,160]		veto[0,160]

Electrons

Cut	LooseNotTight Tight	
PT	\geq 5 GeV	$\geq 5 \text{GeV}$
$ \eta $	≤ 2.5	≤ 2.5
IP _{3D}	< 0.0175 cm	< 0.01 cm
oIPap	< 2.5	< 2.0
dxy	$< 0.05 \rm{cm}$	$< 0.05 \rm{cm}$
dz	< 0.1 cm	< 0.1 cm
Isoabs	$< 20.0 \text{GeV} + \frac{300.0 \text{GeV}^2}{p_{\text{T}}}$	< 5 GeV
Iso _{rel}	< 1.0	< 0.5
Deep CSV veto	-	custom loose WP
Electron MVA ID	custom ID	tight WP
No missing pixel hits	\checkmark	1
No conversion vertex	\checkmark	\checkmark

Muons

Cut	LooseNotTight	Tight
p _T	$\geq 3.5 \text{GeV}$	$\geq 3.5 \text{GeV}$
$ \eta $	≤ 2.4	≤ 2.4
IP _{3D}	< 0.0175 cm	< 0.01 cm
$\sigma_{\rm IP_{3D}}$	< 2.5	< 2.0
d_{xy}	$< 0.05 \rm{cm}$	< 0.05 cm
d_z	< 0.1 cm	< 0.1 cm
Iso _{abs}	$< 20.0 \text{GeV} + \frac{300.0 \text{GeV}^2}{p_T}$	< 5 GeV
Iso _{rel}	< 1.0	< 0.5
Deep CSV veto	\wedge	custom loose WP
loose ID	\checkmark	$\backslash \langle \checkmark$
soft ID	1	$\backslash \backslash \checkmark$

1 . . 1 .

CIL CD

Analyses selections (Light Stops in Top Corridor)

Baseline event selection

Opposite-sign dilepton pair $m_{\parallel} > 20 \text{ GeV}$ Leading lepton $p_T > 25 \text{ GeV}$ At least 2 jets At least 1 b-tagged jet $|m_{(ee,\mu\mu)} - m_Z| > 15 \text{ GeV}$

Additional SR selections $p_{\tau}^{miss} > 50 \text{ GeV}$

m_{T2} > 80 GeV

Muons

Tight ID p_T > 20 GeV and $|\eta|$ < 2.4</td>Rellso04 < 0.15</td>

 $d_z \leq$ 0.10 cm and $d_{xy} \leq$ 0.05 cm

Electrons

Tight cut-based ID (Fall-94X-V2) $p_T > 20 \text{ GeV and } |\eta| < 2.4$ Rellso03 year/ η dependent $d_z \le 0.10 (0.20) \text{ cm for barrel (endcaps)}$ $d_{xy} \le 0.05 (0.10) \text{ cm for barrel (endcaps)}$

Jets and b-jets

Tight or tightLepVeto ID $p_T > 30$ GeV and $|\eta| < 2.4$ ΔR (jet, lepton) > 0.4**b-tagged jets**: medium WP of Deep Jet tagger

Analyses selections (R-Parity Violating Stops)

Selection	Jets	Electrons	Muons	
Quality	AK4 PFJets with CHS DeepCSV medium WP for b jets	Tight cut-based ID Mini-isolation < 0.1	Medium ID Mini-isolation < 0.2	
$ \eta $		< 2.4		
PT	> 30 GeV	2016: > 30 GeV 2017/2018: > 37 GeV	> 30 GeV	

SR event selection

Require at least 7 jets
$H_{\rm T}>300~{ m GeV}$
At least one b jet
Exactly one lepton
$50 < M_{\mathrm{b},\ell} < 250~\mathrm{GeV}$

Abstract

Supersymmetric models are characterized by a strong diversity of experimental signatures. Since general-purpose searches have not yet given any clear indication of new physics, dedicated methodologies and tools have been developed to target the regions of the parameter space where the analysis is most challenging and SUSY might still lie undetected. This presentation will describe relevant examples among searches performed by the CMS Collaboration using the full dataset of proton-proton collisions collected during the Run 2 of the LHC at a center-of-mass energy of 13 TeV.

