

Search for invisible decays at BESIII

Xiaodong Shi

on behalf of the BESIII Collaboration

University of Science and Technology of China

- Why invisible decays
- BEPCII/BESIII
- Search for $J/\psi \rightarrow \gamma + invisible$
- Search for $\Lambda \rightarrow$ invisible
- Summary

EPS-HEP Conference 2021

European Physical Society conference on high energy physics 2021

Online conference, July 26-30, 2021

Why invisible decays

- Search for invisible decays at
 colliders is one way to search for
 dark matter.
- This talk focuses on recent search for hadron invisible decays at BESIII. 2021/07/26

- Dark matter, one of compelling reasons to new physics.
- Many evidence in astronomy but no direct observation yet.

BEPCII: high luminosity double-ring collider

Center-of-mass energy: 2.0 – 4.95 GeV

BESIII

detector

2004: started BEPCII upgrade, BESIII construction 2008: test run 2009-now: BESIII physics run

 1989-2004(BEPC): L_{peak} = 1.0 x 10³¹ /cm²s

 2009-now(BEPCII) L_{peak} = 1.0 x 10³³/cm²s
 (Achieved on Apr. 5th, 2016)

Linac

BESIII detector

[1] M. Ablikim et al. (BESIII Collaboration), Nucl. Instr. Meth. A614, 345 (2010).

BESIII data

- > Huge data set in τ -c region.
- > World largest J/ ψ , ψ ', ψ '' data set by direct e⁺e⁻ annihilation.

In the near future, will have 3 B ψ', 20 fb⁻¹ ψ'' in total.
2021/07/26 X.Shi
Search for invisible decays at BESIII

Searches for invisible decay at BESIII

 \succ Search for η and η' invisible decays in J/ψ →Φη and Φη'

Phys. Rev. D 87, 012009 (2013)

Search for the invisible decays of $V(\omega, \Phi)$ in $J/\psi \rightarrow V\eta$ decays *J*/ ψ invisible *Phys. Rev. D* 98, 032001 (2018)

 e^-

V(ω/Φ)

 \succ Search for J/ψ →γ+invisible

Search for $\Lambda \rightarrow$ invisible 2021/07/26

 $e^{\hat{+}}$

Phys. Rev. D 101, 112005 (2020) In this talk! Preliminary result In this talk!

Phys. Rev. D 101, 112005 (2020)

A series of supersymmetric Standard Models, including Next-to-Minimal Supersymmetric Model, predict a CP-odd pseudoscalar Higgs (A⁰). The A⁰ can be produced in quarkonium radiative decay:

$$\frac{\mathcal{B}(V \to \gamma A^0)}{\mathcal{B}(V \to \mu^+ \mu^-)} = \frac{G_F m_q^2 g_q^2 C_{QCD}}{\sqrt{2}\pi\alpha} \left(1 - \frac{m_{A^0}^2}{m_V^2}\right)$$

where A^0 can decay to two neutralinos (invisible to detector), $g_c = \cos\theta_A / \tan\beta$, $g_b = \cos\theta_A \tan\beta$.

Analysis strategy:

≻ Using $\psi' \rightarrow \pi^+ \pi^- J/\psi$ to get J/ψ sample.

✓ The $\pi^+\pi^-$ provide excellent trigger.

✓ Large BR (34.68%).

> Tag J/ ψ first. Then search for signal. $\mathcal{B} = \frac{N_{\text{sig}} \cdot \epsilon_{J/\psi}}{N_{J/\psi} \cdot \epsilon_{\text{sig}}}$

Perform semi-blind procedure.

Fit to the rec. mass of $\pi^+\pi^-$, get 8.848×10⁷ J/ψ from 4.481×10⁸ ψ' data set.

Based on tagged J/ ψ sample, search for J/ $\psi \rightarrow \gamma + invisible$.

- \succ Only $\pi^+\pi^-$ and one good shower (signal shower) in detector.
- \succ Signal shower and recoiled invisible must direct to the barrel region.
- Huge background from $J/\psi \rightarrow n\bar{n}$, $\gamma n\bar{n}$, $\gamma K_L K_L \dots$
- \succ Use shower shape to identify γ from *n*, \overline{n} , K_L .
- \succ BESIII simulation didn't simulate shower of *n*, \overline{n} , K_L well,
- \succ select control sample:
 - $\checkmark \gamma: J/\psi \rightarrow \rho \pi, \pi^0 \rightarrow \gamma \gamma$ $\checkmark n/\overline{n}$: $J/\psi \rightarrow p\pi n/\overline{n}$ $\checkmark K_L:]/\psi \rightarrow K\pi K_L \&]/\psi \rightarrow \pi\pi \varphi, \varphi \rightarrow K_S K_L$
- For background MC, correct the shower energy and efficiency of n, \overline{n}, K_L momentum dependently.

Prob / 0.01 90'0 200

0.04

0.02

0.1 50.12 neutron Prob 0.1 0.08 0.06 0.04 0.02 20 10 30 40 hitnum-10xEnergy(GeV)

anti-neutror

40

50

• Huge bkg from $\gamma K_L K_L$, due to low efficiency of K_L .

- Un-binned fit to extract signal:
- Signal : signal MC shape
- Two peak bkg: fixed Crystal Ball, determined by fits on exclusive MC
- Non-peak bkg: exponential function.
- Scan m(invisible) from $0 \sim 1.2 \text{ GeV}/c^2$.
- No significant signal found.
 Max significance is 1.15σ.

Use the modified frequentist method (*CLs*) to calculate upper limits. A.L. Read, J. Phys. G 28, 2693 (2002)

Preliminary result

 τ(n) measured by beam method and storage method are different.

 $\tau_n^{beam} = \frac{\tau_n}{\mathcal{B}(n \to p + X)} > \tau_n^{bottle} \longrightarrow \mathcal{B}(n \to p + X) \approx 99\%$

If 1% n decays into dark matter, this can be understood.

Some models predict baryon invisible decays:

> No experimental search for baryon invisible decays until now.

Phys. Lett. B 745 (2015), 79 Phys. Rev. Lett. 111, 222501 (2013)

Analysis strategy:

 \blacktriangleright Using J/ $\psi \rightarrow \overline{\Lambda}\Lambda$ to get Λ sample from J/w data set.

$$\mathcal{B}(\Lambda \to \text{invisible}) = \frac{N_{\text{sig}}}{N_{\text{tag}} \cdot (\varepsilon_{\text{sig}} / \varepsilon_{\text{tag}})}$$

- Perform semi-blind procedure.
- Search for signal on total energy in EMC.

- \succ Reconstruct $\bar{p}\pi^+$.
- Require TOF hit from charged tracks, to guarantee all showers are related to the event.
- \succ Fit to the rec. mass of $\bar{p}\pi^+$, get $4.15 \times 10^{6} \Lambda$. 2021/07/26

- > Based on previous tagged \land sample.
- No extra charged tracks.
- > Search signal on total energy in EMC (E_{EMC}).
- → Main background is $\Lambda \rightarrow n\pi^{\circ}$. E_{EMC} from π° , n and noise.
- Current BESIII simulation didn't simulate n in EMC well.
- → By control sample $J/\psi \rightarrow \overline{\Lambda}(\overline{p}\pi^+)\Lambda(n\pi^0)$, get precise n's and noise's E_{EMC} and correct MC simulation.

- Data consistent with MC well.
- No obvious signal.

- Use the modified frequentist method (*CLs*) to calculate upper limits @ 90% confidence level.
- Get B(Λ → invisible) < 7.4×</p>
 10⁻⁵ with 10B J/ψ data.
- First search for baryon invisible decay. Will release soon.

Summary

With 4.48B ψ' data sample, search for J/ψ

 → γ+invisible. No obvious signal found.
 Upper limits @ 90% confidence level for
 m(invisible) in [0,1.2] GeV/c², which is ~6.2
 times better than previous results.

- With 10 B J/ψ data sample, search for Λ →invisible. No obvious signal found. Upper limit @ 90% confidence level: 7.4×10⁻⁵.
 First search for baryon invisible decay.
- More huge data in BESIII. Many ongoing invisible searches. More exciting results in future.

BACK-UP

Systematic uncertainty

Source	Uncertainty
Tagged J/ψ number	
Signal shape	0.1%
Background shape	0.1%
Fit bin size	0.3%
Fit range	0.6%
Signal efficiency	
Gamma reconstruction	1%
Only one good shower	0.6%
Extra showers' energy cut	Less than 0.1%
Shower shape cut	0.9%
Fit procedure	
Number of $\psi(3686) \rightarrow \pi^+ \pi^- J/\psi, J/\psi \rightarrow \gamma \eta$	17%
Number of $\psi(3686) \rightarrow \pi^+ \pi^- J/\psi, J/\psi \rightarrow \gamma \pi^0$	17%
Number of continuum background	4.4%

Summary of systematic uncertainty.

Choice or uncertainty
$18^\circ, 20^\circ \text{ and } 22^\circ$
10, 20, 30, 40, 50 MeV
0.6%