

Searches for new physics with leptons using the ATLAS detector

Daniele Zanzi on behalf of the ATLAS Collaboration

EPS-HEP, 27/07/21

New physics with leptons?

 B^-

- Many open questions related to lepton properties and interactions, e.g.
 - Origin of neutrino mass
 - Origin of flavour pattern of Yukawa interactions
- Hints of lepton anomalies, e.g.
 - Hints of the violation of lepton flavour universality (LFU) in B-meson decays
 - Discrepancy between measured and predicted values of muon anomalous magnetic moment $(g-2)_{\mu}$
- Possible explanations with UVcomplete models predict existence of new particles at the TeV scale, e.g.
 - Leptoquarks, heavy leptons, new gauge bosons, SUSY smuons, ...

arXiv:/1909.12524

R(D*)

 $D^{(*)}$

04

0.25

0.2

Belle1

0.2

+ Average of SM predictions $R(D) = 0.299 \pm 0.003$

0.3

 $R(D^*) = 0.258 \pm 0.005$

 $R(D^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathscr{B}(B \to D^{(*)}\ell\nu_{\ell})}$

 $\Delta \chi^2 = 1.0$ contours

Belle15

World Average

0.4

 $R(D) = 0.340 \pm 0.027 \pm 0.013$

 $R(D^*) = 0.295 \pm 0.011 \pm 0.008$

0.5

Outline

- More experimental inputs from different fronts are needed to identify a possible common explanation
- ATLAS is addressing this puzzle with a broad range of searches
- Test of SM symmetries
 - [NEW] Search for charge flavour symmetry violation
 - Search for $Z \to \ell \tau \, (\ell = e, \mu)$ decays
 - [NEW] Search for $Z \rightarrow e\mu$ decays
- Search for new heavy particles predicted in UV-complete SM extensions
 - Search for type-III seesaw heavy leptons
 - Search for $W' \to \tau \nu$

 $\frac{\sigma(pp \to e^+\mu^- + X)}{\sigma(pp \to e^-\mu^+ + X)}$

 $e^+\mu^-/e^-\mu^+$ Measurement N_{EW}

- $\rho_{\rm SM} = 1$, but new physics can lead to $\rho \neq 1$, for example:
 - R-parity violating (RPV) SUSY models with smuons $\tilde{\mu}_L$
 - Scalar LQ models with couplings $S_1 \rightarrow c\mu^-, ue^-$
 - New physics connected to **B-anomalies** and $(g-2)_{\mu}$
- Search for charge-flavour symmetry violation ho>1
 - Search for $\rho < 1$ more challenging since experimental effects tend to bias to $\rho < 1$, e.g. $\sigma(W^+j) > \sigma(W^-j)$ and mis-identification probability $P^{\text{mis}-\text{ID}}(j \to e) > P^{\text{mis}-\text{ID}}(j \to \mu)$
- Analysis almost completely data-driven
 - Data-driven estimate of events with mis-identified leptons
 - Charge-dependent detector effects in muon reconstruction corrected for
- Measurement in event categories sensitive to events with invisible particles (SR-MET and SR-RPV) and to events produced with jets (SR-JET and SR-LQ)

 $\rho = \frac{\sigma(pp \to e^+\mu^- + X)}{\sigma(pp \to e^-\mu^+ + X)}$

[<u>ATLAS-CONF-2021-045</u>] 5

LFV in Z decays

- Lepton flavour conservation is an accidental symmetry in SM
- Violation of lepton flavour conservation (LFV) not forbidden by any fundamental symmetry
- Any observation is a clear indication of NP!
- Search for $Z \to \ell \ell'$ complementary to low-energy searches, e.g. $\tau \to \gamma \mu$ and $\mu \to \gamma e$ (eff vertices at different energies)
- Challenge: look for tiny signal in huge background

Search for $Z \to \ell \tau$

- Search for $Z \rightarrow \ell \tau (\ell = e, \mu)$ in final states with both hadronic and leptonic τ decays [Nature Physics 17, 819 (2021), 2105.12491 submitted to PRL]
- Event classification with Neural Networks
- Theory and experimental systematic uncertainties on signal and $Z \rightarrow \tau \tau$ events reduced via data-driven techniques
- Measurement dominated by statistical uncertainties

Hadronic channel

	Uncertainty on	${\cal B}(Z o \ell au) \; [imes 10^{-6}]$
Source of uncertainty	e au	μau
Statistical	± 3.5	± 2.8
Systematic	± 2.3	± 1.6
au-leptons	± 1.9	± 1.5
Energy calibration	± 1.3	± 1.4
Jet rejection	± 0.3	± 0.3
Electron rejection	± 1.3	
Light leptons	± 0.4	± 0.1
$E_{\rm T}^{\rm miss}$, jets and flavour tagging	± 0.6	± 0.5
Z-boson modelling	± 0.7	± 0.3
Luminosity and other minor backgrounds	± 0.8	± 0.3
Total	± 4.1	± 3.2

Nature Physics 17, 819 (2021), arXiv:2105.12491 7

Search for $Z \rightarrow e\mu$

- . Search for $Z \to e \mu$ peak in the $m_{e \mu}$ invariant mass distribution
- Background events with opposite-sign $e\mu$ pair: $Z \rightarrow \tau \tau, \mu \mu (\rightarrow e), t\bar{t}$ and WW
- To reduce backgrounds, events with high- p_T jet and large $E_T^{\rm miss}$ are vetoed. BDT to further improve background rejection
- Total number of Z decays determined from sample of $Z \rightarrow ee, \mu\mu$ decays
- Analysis limited by statistical uncertainties in data and in simulation
- Upper limit set at $\mathscr{B}(Z \to e\mu) < 3.0 \times 10^{-7}$

Search for Heavy Leptons

- Search for heavy leptons in events with 3/4 leptons
- Benchmark model: Type-III seesaw model which provides a heavy Majorana neutrino that could explain small neutrino mass
- Phenomenology similar to other models with heavy leptons, like Vector-Like Lepton triplets that could be linked to $(g 2)_{\mu}$ anomaly

Search for Heavy Leptons

- Statistical uncertainties dominant in SRs
- Results combined with similar search in 2-lepton events [Eur. Phys. J. C 81 (2021) 218]
- Exclusion limits at $m(N, L^{\pm}) > 910 \text{ GeV}$
- Most stringent limits on type-III seesaw models at LHC

Search for $W' \to \tau \nu$

 $\nu_{\tau} \rightarrow \tau_{had-vis}$

- Search for high-mass resonances in events with $\bar{\nu}_{\tau}$ hadronically decaying τ lepton and missing transverse energy E_T^{miss}
 - Motivated by extensions of SM with heavy gauge bosons that violate LFU
- Signal events expected to have:
 - back-to-back and p_T -balanced $E_T^{
 m miss}$ and $au_{
 m had-vis}$

high
$$m_T = \sqrt{2E_T^{\text{miss}}p_T(1 - \cos\Delta\phi)}$$

- Dominant backgrounds:
 - $W \rightarrow \tau \nu : W W'$ interference model dependent and neglected
 - events with mis-identified $\tau_{\rm had-vis}$ ("jet background") estimated from data

D. Zanzi

Search for $W' \to \tau \nu$

- Upper limits on model-independent cross-section as well as for:
 - Sequential Standard Model (SSM) where W' has same flavour-universal coupling as W
 - Non-Universal Gauge Interaction Model (NUGIM) with enhanced couplings to third generation fermions (cot $\theta_{\rm NU}>1$)

Summary

- Growing evidence for anomalies in lepton interactions
- New experimental data needed from complementary frontiers
- ATLAS is pushing the search for new phenomena in lepton interactions on several fronts

$LFV\ Z\ decay$	New UL @95%CL	Previous UL @95%CL
$\mathcal{B}(Z \to \mu \tau)$	6.5×10^{-6} [ATLAS]	1.2×10^{-5} [DELPHI]
$\mathcal{B}(Z \to e\tau)$	5.0×10^{-6} [ATLAS]	9.8×10^{-6} [OPAL]
$\mathcal{B}(Z \to e\mu)$	3.0×10^{-7} [ATLAS]	7.5×10^{-7} [ATLAS]

Additional Material

D. Zanzi

Search for $Z \rightarrow \ell \tau$

- Deep neural networks with full kinematic information (4-momentum components) of particles
- Inputs:
 - Removal of physical symmetries via rotation and Lorentz-boost. Reduction from 12 to 6 independent momentum components, hence reduced set of NN inputs (smaller network, good given limited statistics for training)
 - Addition of high-level variables (eg masses) to aid training

Variable	Description
$p_{z}(\ell)$ $E(\ell)$ $p_{x}(\tau_{\text{had-vis}})$ $p_{z}(\tau_{\text{had-vis}})$ $E(\tau_{\text{had-vis}})$ $E_{\text{T}}^{\text{miss}}$	$ \begin{array}{ll} z \text{-component of the light lepton's momentum.} \\ \text{Energy of the light lepton.} \\ x \text{-component of the } \tau_{\text{had-vis}} \text{ candidate's momentum.} \\ z \text{-component of the } \tau_{\text{had-vis}} \text{ candidate's momentum.} \\ \text{Energy of the } \tau_{\text{had-vis}} \text{ candidate.} \\ \text{The missing transverse momentum.} \end{array} \qquad \begin{array}{l} \text{In transformed} \\ \text{frame} \end{array} $
$m_{ m vis}(\ell, au)$ $m_{ m coll}(\ell, au)$ $m(\ell, au ext{ track})$	The visible mass: the invariant mass of the $\ell - \tau_{\text{had-vis}}$ system. The collinear mass: the invariant mass of the $\ell - \tau_{\text{had-vis}} - \nu$ system, where the ν is assumed to have a momentum that is equal in the transverse plane to the measured $E_{\text{T}}^{\text{miss}}$ and collinear in η with the $\tau_{\text{had-vis}}$ candidate. The invariant mass of the light lepton and the track associated with the $\tau_{\text{had-vis}}$ candidate (only used by the $Z \to \ell \ell$ classifier).
$\Delta \alpha$	A kinematic discriminant sensitive to the different fractions of τ -lepton four-momentum carried by neutrinos in signal and background [7].

Similar set for leptonic channel

N N N N

- One binary NN classifier trained against each main background
 - Had channel: $Z \rightarrow \tau \tau$, W + j, $Z \rightarrow \ell \ell$
 - Lep channel: Z
 ightarrow au au , $t \overline{t}$, VV
- NN outputs combined exploiting different correlations of these for different processes
- Different source of backgrounds separated from signal but also among themselves
- Shape fit of full combined NN output spectrum able to better constrain each individual background contribution, hence better sensitivity

- Modelling of **Z production**:
 - Signal (Pythia) and $Z \rightarrow \tau \tau$ (Sherpa) events reweighed to fiducial Z production cross section measurement by ATLAS to reduce theory uncertainties
- **Common normalisation factor** on signal and $Z \rightarrow \tau \tau$ determines $\sigma_Z \times A(\ell \tau)$ from data and reduces experimental systematics uncertainties
- Events with mis-identified objects $(j \rightarrow \tau_{had-vis})$ fakes and non-prompt electrons and muons) modelled from data

Eur. Phys. J. C 80 (2020) 616 [______0.06 _______0.05 ______0.04 _______0.04 Data ATLAS Sherpa v2.2.1 . √s=13 TeV, 36.1 fb⁻¹ RadISH+NNLOjet NNLO+N³LL Powheg+Pythia8 (AZNLO tune) Pythia8 (AZ-Tune) 0.03 کے 0.02 0.01 Here 1.15 1.1 Data 1.05 MC / Data 1.05 0.95 0.9 0.85 20 25 30 15 900 0 10 100 300 p[∥]_⊤ [GeV]

Leptonic channel

Hadronic channel			Sou
	Uncertainty on <i>E</i>	$\mathcal{B}(Z o \ell au) \; [imes 10^{-6}]$	Sta
Source of uncertainty	e au	$\mu \tau$	Sve
Statistical	± 3.5	± 2.8	
Systematic	± 2.3	± 1.6	
au-leptons	± 1.9	± 1.5	
Energy calibration	± 1.3	± 1.4	
Jet rejection	± 0.3	± 0.3	
Electron rejection	± 1.3		
Light leptons	± 0.4	± 0.1	
$E_{\rm T}^{\rm miss}$, jets and flavour tagging	± 0.6	± 0.5	
Z-boson modelling	± 0.7	± 0.3	
Luminosity and other minor backgrounds	± 0.8	± 0.3	
Total	± 4.1	± 3.2	Tot

	Uncertainty in $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]				
Source of uncertainty	eτ	μau			
Statistical	±3.5	±3.9			
Fake leptons (statistical)	±0.1	± 0.1			
Systematic	±2.7	±3.4			
Light leptons	±0.4	± 0.4			
$E_{\rm T}^{\rm miss}$, jets and flavor tagging	±2.1	±2.4			
$E_{\mathrm{T}}^{\mathrm{miss}}$	±0.4	± 0.8			
Jets	±1.9	± 2.2			
Flavor tagging	±0.5	± 0.9			
Z-boson modeling	< 0.1	± 0.1			
$Z \rightarrow \mu \mu$ yield	-	± 0.8			
Other backgrounds	±0.1	± 0.6			
Fake leptons (systematic)	±0.4	±0.9			
Total	±4.4	±5.2			

Nature Physics 17, 819 (2021), arXiv:2105.12491 18

Ha

Sta Sys

- Limits on $\mathscr{B}(Z \to \ell \tau)$ for unpolarised and maximally polarised τ leptons
- Due to spin correlations, same polarisation has opposite effects on the energy fraction of the visible decay products in leptonic and hadronic decays
- Combined results are almost independent of polarisation hypothesis

Nature Physics 17, 819 (2021), arXiv:2105.12491 19

	Observed (expected) upper limit on $\mathcal{B}(Z \rightarrow \ell \tau)$ [×10 ⁻					
Final state, polarization assumption	e au	μau				
$\ell \tau_{had}$ Run 1 + Run 2, unpolarized τ	8.1 (8.1)	9.5 (6.1)				
$\ell \tau_{\rm had}$ Run 2, left-handed τ	8.2 (8.6)	9.5 (6.7)				
$\ell \tau_{\rm had}$ Run 2, right-handed τ	7.8 (7.6)	10 (5.8)				
$\ell \tau_{\ell'}$ Run 2, unpolarized τ	7.0 (8.9)	7.2 (10)				
$\ell \tau_{\ell'}$ Run 2, left-handed τ	5.9 (7.5)	5.7 (8.5)				
$\ell \tau_{\ell'}$ Run 2, right-handed τ	8.4 (11)	9.2 (13)				
Combined $\ell \tau$ Run 1 + Run 2, unpolarized	d τ (5.0)(6.0)	6.5 5.3)				
Combined $\ell \tau$ Run 2, left-handed τ	4.5 (5.7)	5.6 (5.3)				
Combined $\ell \tau$ Run 2, right-handed τ	5.4 (6.2)	7.7 (5.3)				
LEP OPAL, unpolarised τ [10] LEP DELPHI, unpolarised τ [11]	9.8 22	17 12				

- Best-fit:
 - $\mathscr{B}(Z \to e\tau) = (-1.4 \pm 2.5(\text{stat}) \pm 1.8(\text{sys})) \times 10^{-6}$
 - $\mathscr{B}(Z \to \mu \tau) = (\pm 1.7 \pm 2.2(\text{stat}) \pm 1.6(\text{sys})) \times 10^{-6}$
- World-best upper limits, **2x** improvement on limits by LEP!

Search for Heavy Leptons

 3ℓ Events:

Table 2: Summary of the selection criteria used to define relevant regions in the three-lepton analysis.

			ZL		/	ZLveto	JN	Low	
	Fake-VR	CR	DB-VR	RT-VR	SR	SR	VR	SR	
				$p_{\rm T}(l_1) >$	> 40 GeV				
				$p_{\rm T}(l_2) >$	> 40 GeV				1.0 unit in the second se
				$p_{\rm T}(l_3) >$	> 15 GeV				400 600 800 1000 1200 1400 1600 1800 Leptons m __ [GeV]
$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	< 5				≥ 5				20 ATLAS Preliminary → Data FNP =
N(jet)			≥	2		≥ 2	≤	1	$18 \frac{1}{10} \sqrt{S} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \text{ #} \text{Total SM} \text{ Diboson}$ $Rare \text{ top}$ $16 \frac{1}{10} \text{ Cther}$
N(bjet)		-	0	≥ 1	-				$14 - m(N^{0},L^{2}) = 600 \text{ GeV} - m(N^{0},L^{2}) = 800 \text{ GeV}$
$m_{ll}(OSSF)$ [GeV]			80 -	100		≥ 115	≥	80	
$H_T + E_T^{\text{miss}} [\text{GeV}]$						≥ 600			
<i>m</i> _{<i>lll</i>} [GeV]		-		≥ 300		≥ 300			
<i>m_{jj}</i> [GeV]						< 300			
$H_T(SS)$ [GeV]						≥ 300			
$H_T(lll)$ [GeV]							≥ 2	230	400 600 800 1000 1200 1400 1600 1800 Leptons m __ [GeV]
$m_T(l_1)$ [GeV]				≥ 200			< 240	≥ 240	30 ATLAS Preliminary + Data FNP 9 / s = 13 TeV, 139 fb ⁻¹ ## Total SM Diboson
$m_T(l_2)$ [GeV]		< 200		≥ 200			\geq	150	U 25 JNLow SR ■ Rare top - Other Other = m/N ⁰ I [±]) - 600 GeV
$\Delta R(l_1, l_2)$			<	1.2	1.2 - 3.5		≥	1.3	$20 m(N^{0},L^{2}) = 800 \text{ GeV} m(N^{0},L^{2}) = 1000 \text{ GeV}$
				_				\searrow	

$$m_T(i) = \sqrt{2p_T(i)E_T^{\text{miss}}(1 - \cos\Delta\phi(i, E_T^{\text{miss}}))}$$
$$H_T = \Sigma_i p_T(i)$$

D. Zanzi

600 800 1000 1200 1400 1600 1800 2000

Leptons m_ [GeV]

Data / Pred. 5.0 51

400

 $m_T = |\Sigma_i^{3\ell} \overrightarrow{p}_{T,i} + \overrightarrow{p}_T^{\text{miss}}|$

Data

Diboso

Other

---- m(N⁰,L[±]) = 600 GeV ---- m(N⁰,L[±]) = 800 GeV

— m(N⁰,L[±]) = 1000 GeV

7 **ATLAS** Preliminary

√s = 13 TeV, 139 fb⁻

ZL Region SR

Events

×

Search for Heavy Leptons

4ℓ Events:

Table 3: Summary of the selection criteria used to define relevant regions in the four-lepton analysis. N_Z is the number of leptonically reconstructed Z, using opposite sign same flavour leptons.

			Q0	/	0	22	
	DB-VR	RT-VR DB-CR RT-C		RT-CR	SR	VR SR	
$ \sum q_\ell $			0			2	
N _{b-jet}	1	1	0	≥ 2	0		
m _{llll} [GeV]	170 - 300	300 - 500	170 - 300	< 500	≥ 300	< 200	≥ 300
						OR	
$H_T + E_T^{\text{miss}}[\text{GeV}]$		≥ 400			≥ 300	< 300	≥ 300
N_Z					≤ 1		
$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$		≥ 5			≥ 5		

 $H_{T} + E_{T}^{miss}$ [GeV]

Search for $W' \rightarrow \tau \nu$

10⁻¹

$\begin{array}{c} E_{\rm T}^{\rm miss} \ {\rm trigger} \\ {\rm Event \ cleaning} \\ \tau_{\rm had-vis} \ {\rm tracks} \\ \tau_{\rm had-vis} \ {\rm charge} \\ \tau_{\rm had-vis} \ p_{\rm T} \\ \tau_{\rm had-vis} \ p_{\rm T} \\ \tau_{\rm had-vis} \ p_{\rm T} \\ {\rm Lepton \ veto} \\ \Delta \phi(\tau_{\rm had-vis} \ p_{\rm T}, E_{\rm T}^{\rm miss}) \end{array}$			Pre 70,9	eselection 0, 110 GeV applied 1 or 3 ± 1 30 GeV 10 GeV applied 2.4 rad			$(pp \rightarrow \tau + E_T^{miss} + X) \times A \times \varepsilon \ [pb]$	0 ⁻¹ 0 ⁻²		ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^1$ Model independent $\rightarrow \tau + E_T^{\text{miss}} 95\% \text{ CL limits}$ $\bullet \text{ Observed}$ $\bullet \text{ Expected}$ $\pm 1\sigma$ $\pm 2\sigma$ $- \text{ ATLAS } \tau v [36.1 \text{ fb}^1]$ PRL 120 (2018) 161802	
	SB	F CR1	egion	requiremen CR2	ts CR3	VR	6				
Tau identification $E_{\rm T}^{\rm miss}$ $p_{\rm T}/E_{\rm T}^{\rm miss}$ $m_{\rm T}$	L > 150 GeV $\in [0.7, 1.3]$	$VL \setminus L$ > 150 GeV $\in [0.7, 1.3]$	<	L 100 GeV _ _	VL \ L < 100 GeV _ _	L > 150 GeV < 0.7 > 240 GeV	1	0 ⁻⁵	0 1000	2000 295 m _T threshold [GeV]	50
$\begin{array}{c} \mathbf{S} \\ $	d nund		Events / 10 GeV	ATL $\sqrt{s} =$ $10^{4} \qquad \text{Sign}$ $10^{3} \qquad \text{Sign}$ $10^{2} \qquad \text{Sign}$	AS Preliminary 13 TeV, 139 fb ¹ al Region	 Data W→τν Jet backg Other ba //// Uncertain 	ground ickground nty	Events / 10 GeV	10^{4} 10^{4} 10^{4} 10^{4} 10^{3} 10^{4} 10^{2} 10^{2}	inary • Data 39 fb ¹ $\square W \rightarrow \tau v$ \square Jet background \square Other background \square Uncertainty	-
2000 1000 0 VS 1.2 1.2 1.2 1.2 2.4 2.6		γ	Data / SM	10 10 1.2 1 0.8 150		······································	400	Data / SM	10 1.2 1 0.8 100 2	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\$	

D. Zanzi

[ATLAS-CONF-2021-045] 25