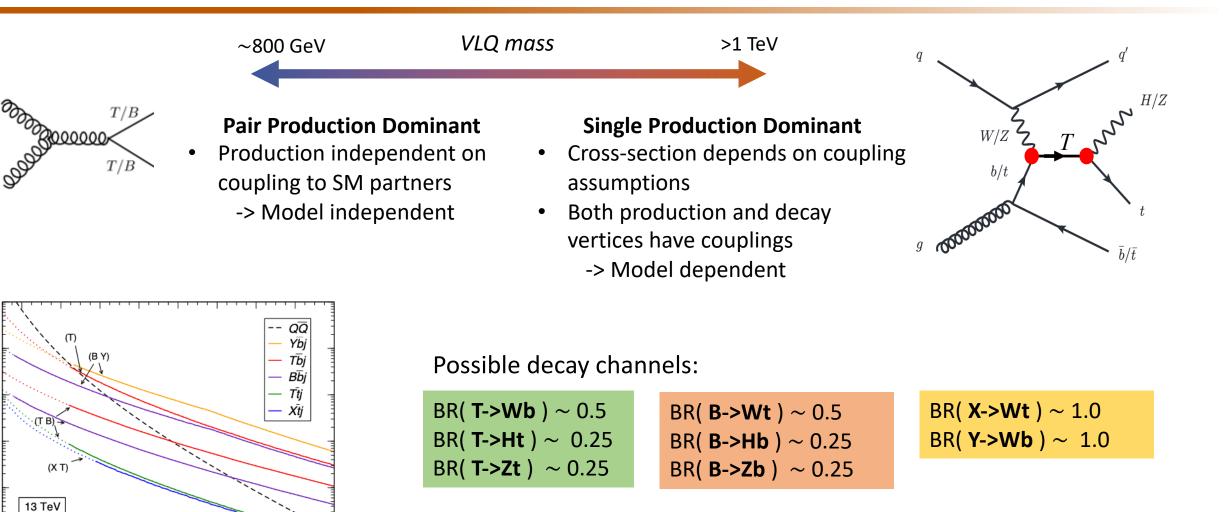

Searches for vector-like quarks with the ATLAS Detector

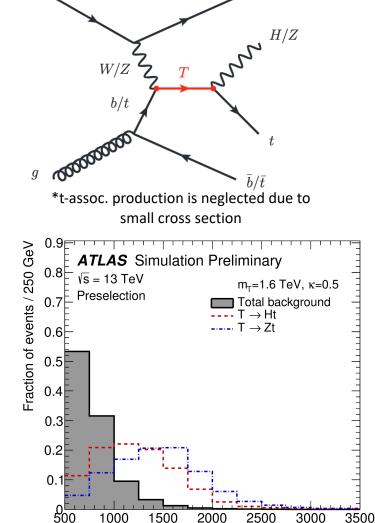
Mesut Unal on behalf of the ATLAS Collaboration PhD Candidate, The University of Texas at Austin *EPS-HEP2021*


- Appear in several BSM models (e.g. Extra Dimensions, Composite Higgs, Little Higgs...)
- Colored spin ½ fermions
- L/R-handed chiralities transform the same under gauge transformations
- Can be "partners" to SM quarks with the same charges (e.g. $T_{2/3}$, $B_{-1/3}$) or can have more exotic charges ($X_{5/3}$, $Y_{-4/3}$...)
- In simplified models, VLQs mix predominantly with 3rd gen. SM partners to regulate Higgs boson mass

Vector-like quarks

arXiv:1306.0572 [hep-ph]

m_o (GeV)


 σ_{max} (fb)

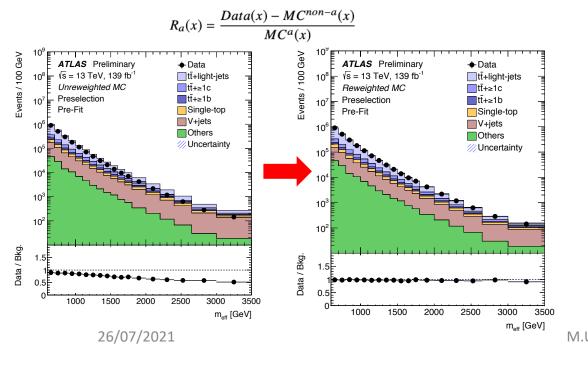
- [NEW] Focus on *b-associated* Single Production of VL T
 - *T*(->*H*t)*q*b with H->bb
 - T(->Zt)qb with $Z->q\overline{q}$
- Lepton(e/μ)+jets final state
- High b-tagged multiplicity particularly targets $H \rightarrow b\overline{b}$
- ≥ 1 forward jet for signal purity
- Re-clustered large-R jets are used for top/H/W/Z tagging
- Discriminant variable: $\mathbf{m}_{eff} = \sum p_{T}^{j} + \sum p_{T}^{\ell} + E_{T}^{miss}$

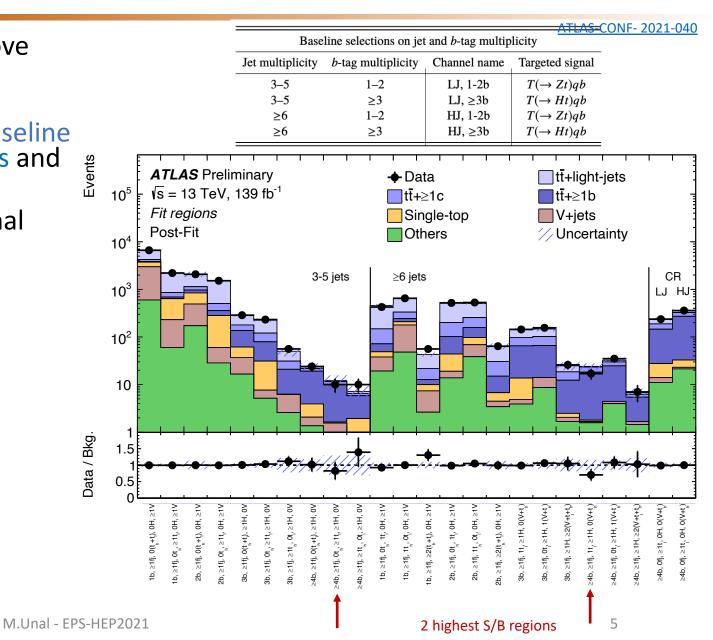
leptons

central jets

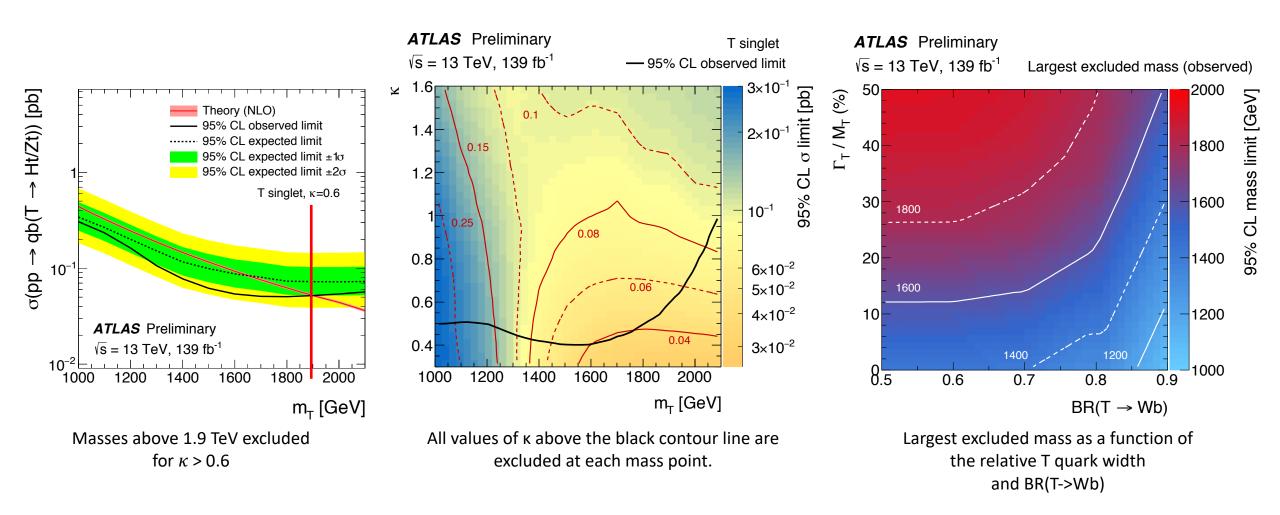
1500

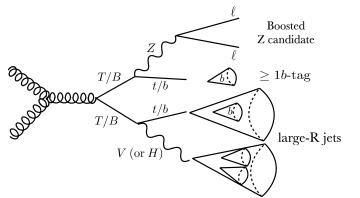
1000


ATLAS-CONF- 2021-040

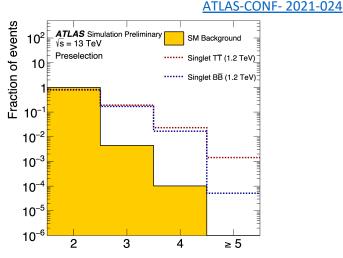

m_{eff} [GeV]

2500

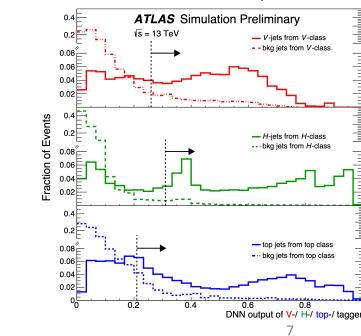

- Background reweighting is applied to improve modelling in tt+jets, single top and V+jets backgrounds
- To maximize search sensitivity, identify 4 baseline categories, which are split into 24 fit regions and 20 validation regions
- Low jet multiplicity (LJ) has most of the signal fraction whereas high jet multiplicity (HJ) maximizes signal acceptance

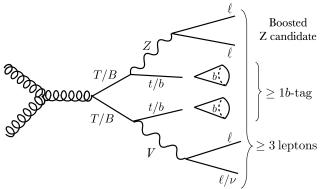


ATLAS-CONF- 2021-040



Search for Pair Production VL T/B with Opposite Sign Multilepton

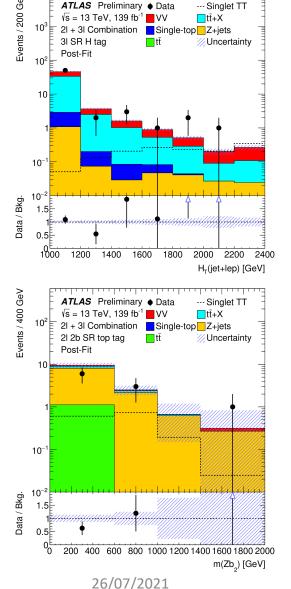




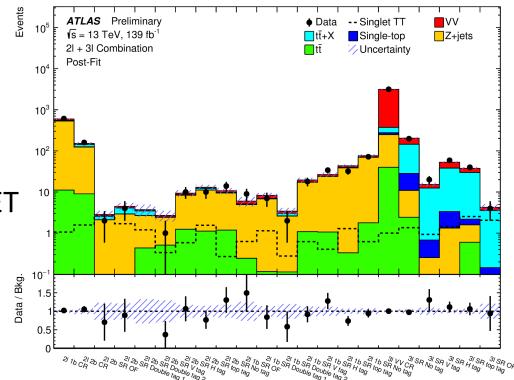
- Same flavor, opposite sign multilepton final states
 - Leptonic Z boson tagged, significantly reduces SM backgrounds
 - \odot 2 and >2 lepton channels

Number of leptons

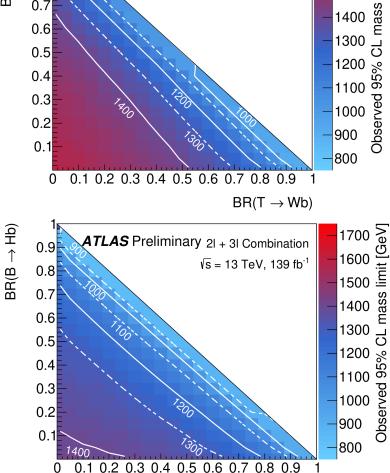
DNN "MCBOT" identification of boosted objects


 Small-R (0.4) jets, re-clustered with anti-k_t algorithm with R=1.0
 Determine probability for hadronic t/H/W/Z simultaneously

*MCBOT: Multi-Class Boosted Object Tagger


Search for Pair Production VL T/B with Opposite Sign Multilepton

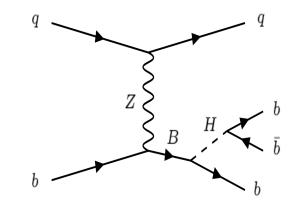
- Trilepton channel:
 - \odot Use scalar sum of jets and leptons p_T (H_T) as fit variable
- Dilepton channel:
 - \odot Use m(Zb) as fit variable
 - \odot 2 signal regions (1b and 2b)
 - Signal region requires H_T + MET
 > 1380 GeV
- 19 total separate regions based on hadronic t/H/W/Z tag multiplicity

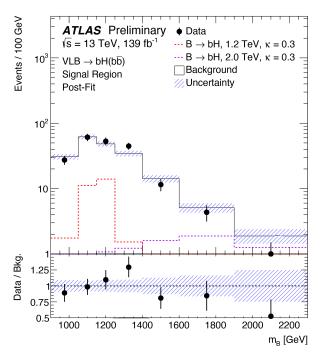

Search for Pair Production VL T/B with Opposite Sign Multilepton

ATLAS-CONF- 2021-024

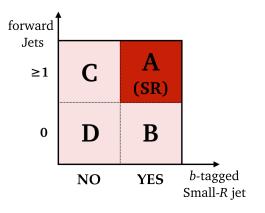
→ Ht) 10 ⊨ $\rightarrow T\overline{T}$) [pb] 10_E $\sigma(pp \to T\overline{T}) \; [pb]$ ATLAS Preliminary 21 + 31 Combination ATLAS Preliminary **ATLAS** Preliminary Theory (NNLO+NNLL) Theory (NNLO+NNLL) 0.9 Obs. Limit
 95% CL Exp. Limit
 95% CL Exp. ± 1σ
 95% CL Exp. ± 2σ Obs. Limit ----- 95% CL Exp. Limit $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ BR(T 0.8 95% CL Exp. ± 1σ 95% CL Exp. ± 2σ TT Singlet TT Doublet (XT) 1⊨-0.7 2I + 3I Combination α(pp 2I + 3I Combination ----2/ (Exp.) ----3/ (Exp.) ••••2/ (Exp.) •••3/ (Exp.) 0.6 10 10 0.5 0.4 10⁻² 10⁻² 0.3 0.2 12001 0.1 10⁻³ 10⁻³ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 800 1000 1200 1400 1600 1000 1200 1400 1600 800 $BR(T \rightarrow Wb)$ m_⊤ [GeV] m_T [GeV]

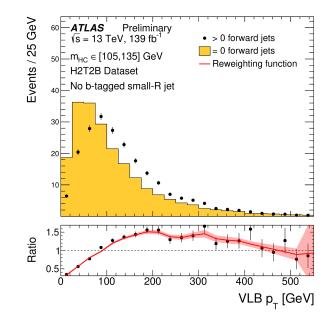
Model	Observed (Expected) Mass Limits [TeV]				
Widdei	2ℓ	3ℓ	Combination		
$T\bar{T}$ Singlet	1.14 (1.16)	1.22 (1.21)	1.27 (1.29)		
$Tar{T}$ Doublet	1.34 (1.32)	1.38 (1.37)	1.46 (1.44)		
$100\% T \rightarrow Zt$	1.43 (1.43)	1.54 (1.50)	1.60 (1.57)		
BB̄ Singlet	1.14 (1.21)	1.11 (1.10)	1.20 (1.25)		
B <i>Ē</i> Doublet	1.31 (1.37)	1.07 (1.04)	1.32 (1.38)		
$100\% B \to Zb$	1.40 (1.47)	1.16 (1.18)	1.42 (1.49)		



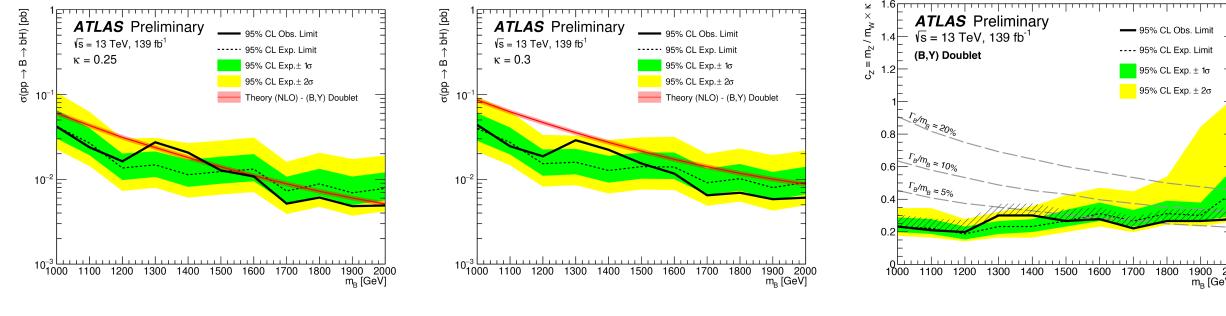

 $BR(B \rightarrow Wt)$

Search for Single Production VL B -> bH (bb)




ATLAS-CONF-2021-018

- Dedicated search for VL B of (B,Y) doublet with all hadronic event selection
- Reconstructed Higgs Candidate (HC) based on large radius jet p_T, m, and associated b-tagged track jets
- Data driven estimation for QCD multijet background using ABCD method
 - $N_A = N_B \times (N_C / N_D)$
- Fit using reconstructed VL B mass: M(B) = M(HC + jet) with $\Delta R(jet, HC) > 2.5$



1900 2000

m_B [GeV]

For κ =0.25, the exclusion is limited to the *1.0 TeV* < *m*_B < *1.28 TeV* and 1.46 TeV < m_B < 2.0 TeV resonance mass ranges

Limits on coupling as a function of VLB mass for doublet representation

VLB doublet resonance is excluded with relative width larger than 5% in the 1.0 TeV $< m_B <$ 1.75 TeV mass range

For κ =0.3, whole mass range is excluded

- New results using full Run-2 dataset are shown
 - First debut of *Single Production VLQ -> Ht/Zt + X* analysis
 - Pair Production VL T/B with Opposite Sign Multilepton
 - Single Production VL B -> bH (bb)
- Many interesting searches for VLQ with masses in $\mathcal{O}(\text{TeV})$ range still possible
- An exciting time is before us!

Thank you!

Backup Slides

ATLAS-CONF- 2021-024

	2ℓ channel					3ℓ channel			
Category	1 <i>b</i> SR				2 <i>b</i> SR		_		
	V-tags	<i>H</i> -tags	top-tags	V-tags	<i>H</i> -tags	top-tags	V-tags	H-tags	top-tags
No tag	0	0	0	0	0	0	0	0	0
V tag	1	0	0	1	0	0	≥ 1	0	0
H tag	0	1	0	0	1	0	0	≥ 1	0
top tag	0	0	1	0	0	1	0	0	≥ 1
Double tag 1	2	0	0	2	0	0		_	
	0	2	0	0	2	0		_	
	1	0	1	1	1	0		_	
		_		0	0	2		_	
Double tag 2	0	1	1	0	1	1		_	
	0	0	2		_			_	
Overflow (OF)	1	1	0	1	0	1	0	≥ 1	≥ 1
		or > 2 tag	gs		or > 2 tag	gs	≥ 1	0	≥ 1
		_			_		≥ 1	≥ 1	0
		_			_		≥ 1	≥ 1	≥ 1

$\mathbf{T}(\mathbf{x}, \mathbf{b})$ and	Fit regions with 3–5 jets, ≥ 1 forward jet					
— T(→Ht)qb T(→Zt)qb	<i>b</i> -tag mult.	Boosted-object mult.	Region name	Targeted signal / bkg		
- ı(→∠ı)qu	1	$0t_h, 0t_l, 0H, \geq 1V$	LJ, 1b, \geq 1fj, 0t _h , 0t _l , 0H, \geq 1V	$T(\rightarrow Zt)qb$		
	1	$0t_h, \geq 1t_l, 0H, \geq 1V$	LJ, 1b, ≥ 1 fj, 0t _h , ≥ 1 t _l , 0H, ≥ 1 V	$T(\rightarrow Zt)qb$		
	2	$0t_h, 0t_l, 0H, \geq 1V$	LJ, 2b, ≥ 1 fj, 0t _h , 0t _l , 0H, ≥ 1 V	$T(\rightarrow Zt)qb$		
	2	$0t_h, \geq 1t_l, 0H, \geq 1V$	LJ, 2b, ≥ 1 fj, 0t _h , ≥ 1 t _l , 0H, ≥ 1 V	$T(\rightarrow Zt)qb$		
	3	$0t_h, 0t_l, \ge 1H, 0V$	LJ, 3b, ≥ 1 fj, 0t _h , 0t _l , ≥ 1 H, 0V	$T(\rightarrow Ht)qb$		
	3	$0t_h, \geq 1t_l, \geq 1H, 0V$	LJ, 3b, ≥ 1 fj, 0t _h , ≥ 1 t _l , ≥ 1 H, 0V	$T(\rightarrow Ht)qb$		
	3	≥ 1 t _h , 0t _l , ≥ 1 H, 0V	LJ, 3b, ≥ 1 fj, ≥ 1 t _h , 0t _l , ≥ 1 H, 0V	$T(\rightarrow Ht)qb$		
	≥4	$0t_h, 0t_l, \ge 1H, 0V$	LJ , $\geq 4b$, $\geq 1fj$, $0t_h$, $0t_l$, $\geq 1H$, $0V$	$T(\rightarrow Ht)qb$		
	≥4	$0t_h, \geq 1t_l, \geq 1H, 0V$	$LJ, \geq 4b, \geq 1fj, 0t_h, \geq 1t_l, \geq 1H, 0V$	$T(\rightarrow Ht)qb$		
	≥4	≥ 1 t _h , 0t _l , ≥ 1 H, 0V	$LJ, \geq 4b, \geq 1fj, \geq 1t_h, 0t_l, \geq 1H, 0V$	$T(\rightarrow Ht)qb$		
	≥4	$0t_h, \geq 1t_l, 0H, 0V$	LJ, \geq 4b, 0fj, 0t _h , \geq t _l , 0H, 0V	$t\bar{t}+\geq 1b$		

Events ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 🔶 Data 12 tt+light-jets ____tī+≥1c ____tī+≥1b Single-top Post-Fit V+jets Others **W**Uncertainty Data / Bkg. 1.5 0.5 0^E... 1500 2000 2500 3000 3500 m_{eff} [GeV]

<i>b</i> -tag mult.	Boosted-object mult.	Region name	Targeted signal / bkg
1	$0t_h, 1t_l, 0H, \ge 1V$	HJ, 1b, ≥1fj, 0t _h , 1t _l , 0H, ≥1V	$T(\rightarrow Zt)qb$
1	$1t_h, 0t_l, 0H, \ge 1V$	HJ, 1b, \geq 1fj, 1t _h , 0t _l , 0H, \geq 1V	$T(\rightarrow Zt)qb$
1	$\geq 2(t_h+t_l), 0H, \geq 1V$	HJ, 1b, ≥1fj, ≥2(t_h + t_l), 0H, ≥1V	$T(\rightarrow Zt)qb$
2	$0t_h, 1t_l, 0H, \ge 1V$	HJ, 2b, ≥ 1 fj, 0t _h , 1t _l , 0H, ≥ 1 V	$T(\rightarrow Zt)qb$
2	$1t_h, 0t_l, 0H, \geq 1V$	HJ, 2b, ≥ 1 fj, 1t _h , 0t _l , 0H, ≥ 1 V	$T(\rightarrow Zt)qb$
2	$\geq 2(t_h+t_l), 0H, \geq 1V$	HJ, 2b, ≥ 1 fj, $\geq 2(t_h+t_l)$, 0H, ≥ 1 V	$T(\rightarrow Zt)qb$
3	$1(V+t_h), 0t_l, \ge 1H$	$\overline{HJ}, \overline{3b}, \geq 1\overline{fj}, \overline{1(V+t_h)}, \overline{0t_l}, \geq 1\overline{H}$	$T(\rightarrow Ht)qb$
3	$0t_h, 1t_l, \geq 1H, 0V$	HJ, 3b, ≥1fj, 0t _{<i>h</i>} , 1t _{<i>l</i>} , ≥1H, 0V	$T(\rightarrow Ht)qb$
3	$\geq 2(V+t_h+t_l), \geq 1H$	HJ, 3b, ≥1fj, ≥2(V+ t_h + t_l), ≥1H	$T(\rightarrow Ht)qb$
≥4	$1(V+t_h), 0t_l, \geq 1H$	HJ, ≥4b, ≥1fj, 1(V+t _h), 0t _l , ≥1H	$T(\rightarrow Ht)qb$
≥4	$0t_h, 1t_l, \geq 1H, 0V$	HJ, ≥4b, ≥1fj, 0t _h , 1t _l , ≥1H, 0V	$T(\rightarrow Ht)qb$
≥4	$\geq 2(V+t_h+t_l), \geq 1H$	HJ, ≥4b, ≥1fj, ≥2(V+ t_h + t_l), ≥1H	$T(\rightarrow Ht)qb$
≥4	$0\bar{\mathbf{t}}_h, \geq 1\bar{\mathbf{t}}_l, 0\bar{\mathbf{H}}, 0\bar{\mathbf{V}}$	$\overline{HJ}, \overline{\geq}4b, \overline{0fj}, \overline{0t_h}, \overline{\geq}t_l, \overline{0H}, \overline{0V}$	$t\bar{t} + \geq 1b$