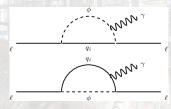
Searches for Leptoquarks with the ATLAS Detector EPS-HEP Conference 2021

Yoav Afik (CERN)
On behalf of the ATLAS collaboration

26.07.2021

Motivation

Hints of Lepton Flavour Universality (LFU) violation in rare B-meson decays:


-
$$b \rightarrow s\ell\ell (R_{K^{(*)}}); b \rightarrow c\ell\nu (R_{D^{(*)}}).$$

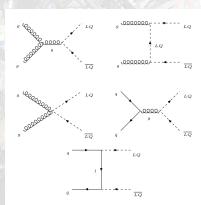
 Muon g-2 anomaly, possibly connected to the LFU anomaly.

Motivation

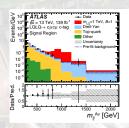
Hints of Lepton Flavour Universality (LFU) violation in rare B-meson decays:

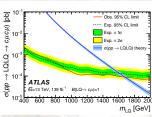
-
$$b \rightarrow s\ell\ell (R_{K(*)}); b \rightarrow c\ell\nu (R_{D(*)}).$$

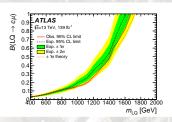
- Muon g-2 anomaly, possibly connected to the LFU anomaly.
- The existence of TeV-scale Leptoquarks (LQs) is a possible solution to the anomalies!
 - Cross-generational couplings are motivated.


LQ Searches at the LHC

- LQs are bosons which couple to a lepton and a quark.
- Dominant production $gg \rightarrow LQ + \overline{LQ}$.

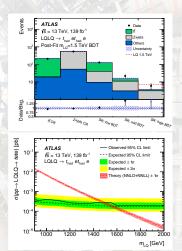

- Analyses vary by the LQ type and decay mechanism:
 - $LQ \rightarrow q/c/b + e/\mu$
 - $LQ \rightarrow t + e/\mu$
 - $LQ \rightarrow t + \tau$
 - $LQ \rightarrow t + \nu$
 - $LQ \rightarrow b + \nu$
 - $LQ \rightarrow b + \tau$




- Model parameters:
 - LQ mass (M_{LQ}) .
 - $\mathcal{B}(LQ \to XY)$.

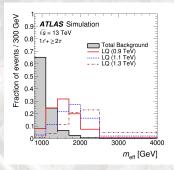
Scalar $\overline{LQ} ightarrow q/c/b+e/\mu$

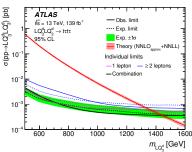
- First dedicated ATLAS search for cross-generational LQs.
- First use of c-tagging in LQ searches.
- Mass asymmetry: $m_{asym} = \frac{M_{lj}^{max} M_{lj}^{min}}{M_{li}^{max} + M_{li}^{min}}$.
- Main backgrounds: Z + jets, $t\bar{t}$, normalized from data.
- Further categorization by c- and b-tagging.



- First ATLAS search for top-philic cross-generational LQ couplings.
- Fully hadronic top-quark decay channel in the boosted regime.
- Boosted Decision Trees (BDT) are used.
- Main backgrounds: Z + jets, dileptonic $t\bar{t}$, normalized from data.

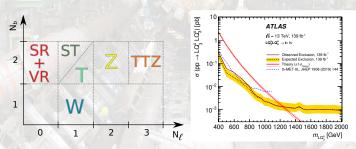
t t CR	Z + jets CR	SR		
LAB & BOAY	$N_{\ell}=2$; opposite-sign			
	$N_{ m J} \geq 2$			
$m_{\ell\ell} > 120 \text{ GeV}$	$70 < m_{\ell\ell} < 110 \text{ GeV}$	$m_{\ell\ell} > 120~{ m GeV}$		
еμ	$ee ext{ or } \mu$	μ		




- First dedicated ATLAS analysis for $LQ \rightarrow t\tau$.
- Main backgrounds: $t\bar{t}$, $t\bar{t}$ + V/H, VV, Fake au_{had} .
- Main discriminating variable: $m_{eff} = \sum_{i,e,\mu,\tau} p_T + E_T^{miss}$

Number of e/µ

6 / 13

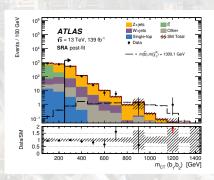


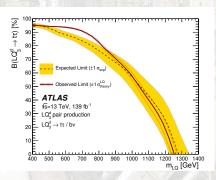
Scalar $LQ_3^u o t \nu/b \tau$

- Search for signature with $t\bar{t} + E_T^{miss}$ in all-hadronic channel.
- Reclustered jets with R=1.2 and R=0.8 for top and W.

Variable/SR	SRA-TT	SRA-TW	SRA-T0	SRB-TT	SRB-TW	SRB-T0	
E _T ^{miss}	> 250 GeV						
$m_1^{R=1.2}$	> 120 GeV						
$m_2^{R=1.2}$	> 120 GeV	60-120 GeV	< 60 GeV	> 120 GeV	60-120 GeV	< 60 GeV	
$m_1^{R=0.8}$	> 60 GeV						

• Main backgrounds: Z + jets, W + jets, $t\bar{t}$, $t\bar{t} + Z$, single top, all normalized from data.

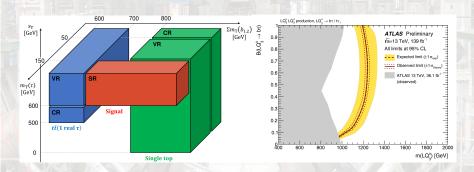



^{**} Dedicated search in analysis targets also SUSY models. For more details, see talk by Jonathan Long in this link.

Y. Afik (CERN) Eur. Phys. J. C 80 (2020) 8, 737 26.07.2021 7 / 13

Scalar $LQ_3^d o b u/t au$

- Search for signature with $b\bar{b} + E_T^{miss}$.
- Main discriminating variables: $m_{eff} = \sum_{j} p_{T} + E_{T}^{miss}$; $m_{CT}^{2}(v_{1}, v_{2}) = [E_{T}(v_{1}) + E_{T}(v_{2})]^{2} [\mathbf{p_{T}}(v_{1}) \mathbf{p_{T}}(v_{2})]^{2}$.
- Uses BDT output score as well.
- Main background: Z + jets, normalized from data.

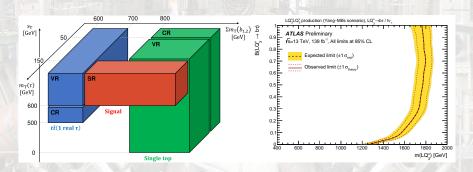


^{**} Dedicated search in analysis targets also SUSY models. For more details, see talk by Jonathan Long in this link.

Y. Afik (CERN) JHEP 05 (2021) 093 26.07.2021 8 / 13

Scalar $LQ_3^u ightarrow b au/t u$ and $LQ_3^d ightarrow b u/t au$

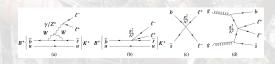
- Targeting $\mathcal{B}(LQ \to q\ell) \sim 0.5$.
- Most of the events: 1τ , 2 *b*-jets, large E_T^{miss} .
- ullet Main backgrounds: $tar{t}$ (1 real au) and single-top, normalized from data.
- Scalar LQs interpretation: LQ_3^u (right) and LQ_3^d .



^{**} Dedicated search in analysis targets also SUSY models. For more details, see talk by Jonathan Long in this link.

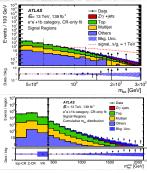
Y. Afik (CERN) ATLAS-CONF-2021-008 26.07.2021 9 / 13

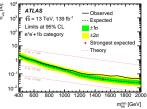
Vector $LQ_3^u o b au/t u$ and $LQ_3^d o b u/t au$


- Targeting $\mathcal{B}(LQ \to q\ell) \sim 0.5$.
- Most events: 1τ , 2 *b*-jets, large E_T^{miss} .
- Main backgrounds: $t\bar{t}$ (1 real au) and single-top, normalized from data.
- Vector-LQs (first time!): Yang-Mills (right) and minimal-coupling scenarios.

^{**} Dedicated search in analysis targets also SUSY models. For more details, see talk by Jonathan Long in this link.

Y. Afik (CERN) Vector Leptoquarks 26.07.2021 10 / 13


bs\ell \ell Contact Interaction



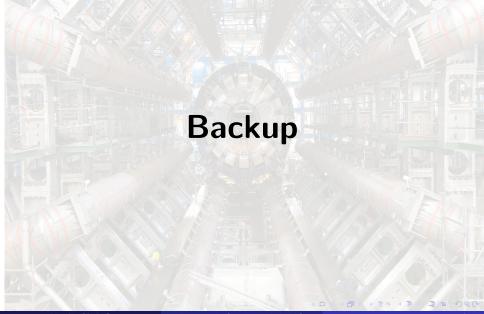
• Generalizing the $bs\ell\ell$ interactions.

Region	top-CRs	Z-CRs	VRs	SRs
$m_{\ell\ell}$ [GeV]	> 130	130-250	250-400	$> 400 + n \cdot 100$
b-tagged jets	2		0/1	

- Enhanced sensitivity for other signal scenarios as well.
- Main backgrounds: Z + jets, dileptonic $t\bar{t}$, normalized from data.

11 / 13

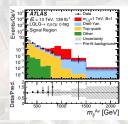
Summary

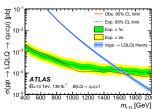

- A variety of searches for LQ pair production, differ by the decay mechanism of the LQ pair.
- A few dedicated searches were done for the first time in ATLAS.
- Still no sign of TeV-scale LQs. Limits were set:

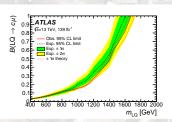
	Leptoquarks		
Decay Mechanism	Comments	M _{LQ} Limits [TeV]	
$LQ ightarrow q/c/b + e/\mu$	electron	> 1.8	
	muon	> 1.7	
$LQ ightarrow t + e/\mu$	electron	> 1.5	
	muon	> 1.5	
LQ ightarrow t + au		> 1.4	
$LQ \rightarrow t + \nu$		> 1.2	
$LQ \rightarrow b + \nu$		> 1.3	
	scalar	> 1.3	
$LQ \rightarrow b + \tau$	vector, Yang-Mills	> 1.8	
	vector, minimal-coupling	> 1.5	
	Contact Interaction	V 5/1/15 V 1/1921	
bsll CI	electrons	$\Lambda/g_* > 2.0 \text{ TeV}$	
DSEE CI	muons	$\Lambda/g_* > 2.4 \text{ TeV}$	

Thank You

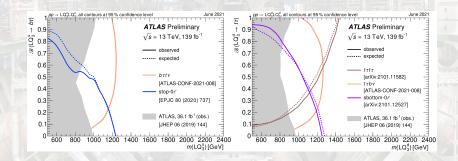
Backup Slides

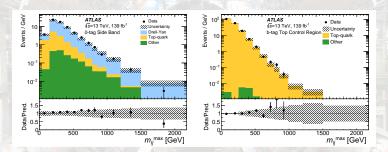



Scalar $LQ o q/c/b + e/\mu$

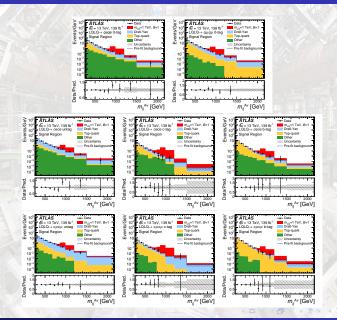

- First dedicated ATLAS search for cross-generational LQs.
- First use of c-tagging in LQ searches.
- Mass asymmetry: $m_{asym} = \frac{M_{ij}^{max} M_{ij}^{min}}{M_{ij}^{max} + M_{ij}^{min}}$.
- Main backgrounds: Z + jets, $t\bar{t}$, normalized from data.

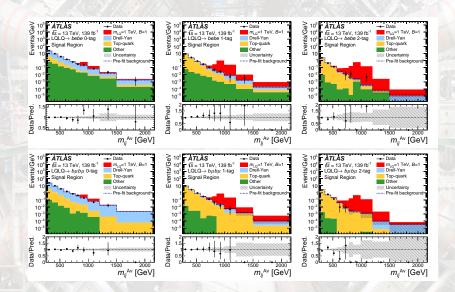
Further selections by
 c- and b-tagging.

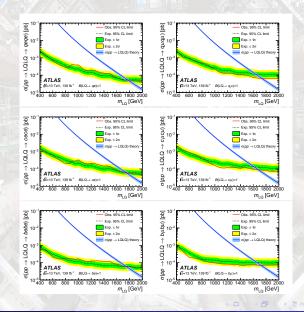


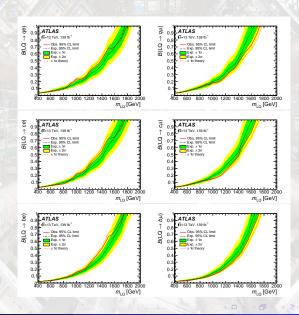


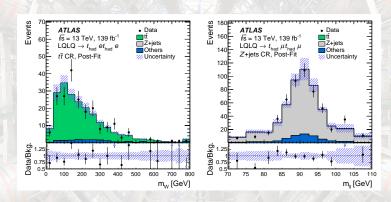
Scalar $LQ_3^{u/d}$ Summary Plots

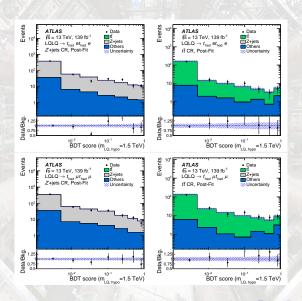

- Left: $LQ_3^u \to b\tau$ as a function of M_{LQ} and $\mathcal{B}(LQ_3^u \to b\tau)$.
- Right: $LQ_3^d \to t au$ as a function of M_{LQ} and $\mathcal{B}(LQ_3^d \to t au)$.
- Include reinterpretation of SUSY searches.

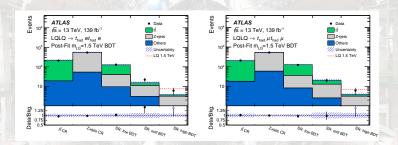

Scalar $LQ o q/c/b + e/\mu$

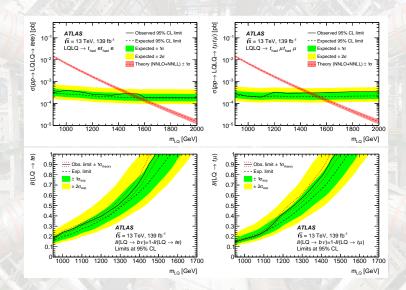

Scalar $LQ ightarrow q/c/b + e/\mu$

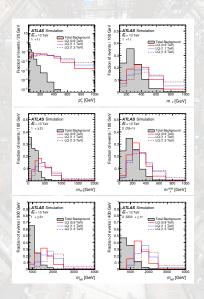

Scalar $LQ o q/c/b + e/\mu$

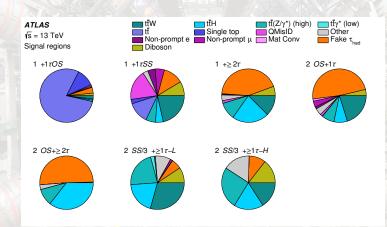

Scalar $LQ ightarrow \overline{q/c/b + e/\mu}$

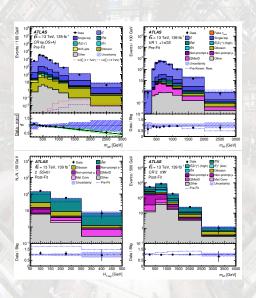



Scalar $LQ ightarrow q/c/b + e/\mu$

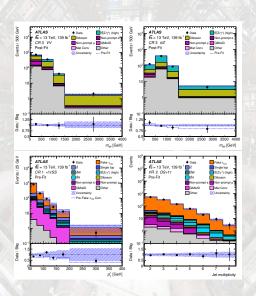

Scalar $LQ o t + e/\mu$

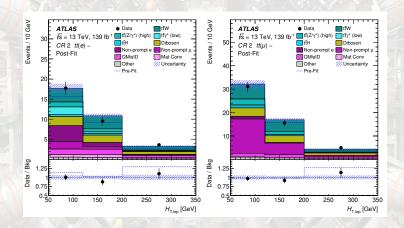


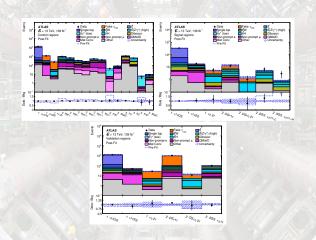

26.07.2021

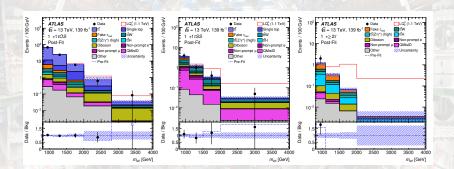


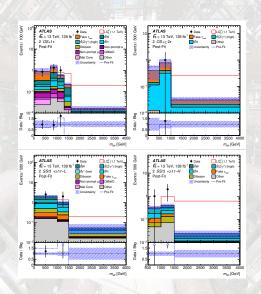
25 / 13

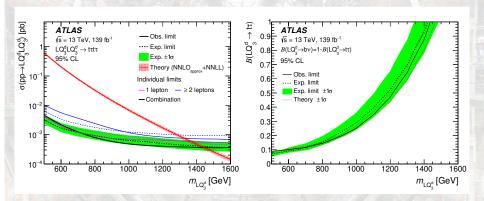



26 / 13

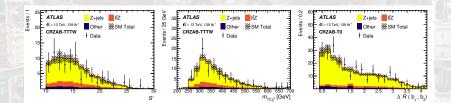



28 / 13





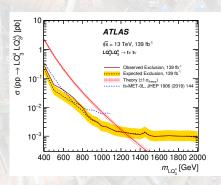
31 / 13

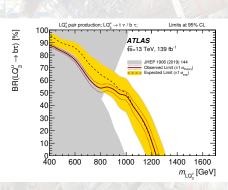


Scalar $LQ_3^u ightarrow t u/b au$

Variable/SR	SRA-TT	SRA-TW	SRA-T0	SRB-TT	SRB-TW	SRB-T0
Trigger	$E_{ m T}^{ m miss}$					
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 250 GeV					
N_{ℓ}	Exactly 0					
$N_{\rm j}$	≥ 4					
$p_{\mathrm{T,2}}$	> 80 GeV					
$p_{\mathrm{T,4}}$	> 40 GeV					
$ \Delta\phi_{\min}\left(\mathbf{p}_{\mathrm{T},1-4},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}\right) $	> 0.4					
N_b	≥ 2					
$m_{\mathrm{T}}^{b,\mathrm{min}}$	> 200 GeV					
τ-veto	✓					
$m_1^{R=1.2}$			> 120) GeV		
$m_2^{R=1.2}$	> 120 GeV	60-120 GeV	< 60 GeV	> 120 GeV	60-120 GeV	< 60 Ge
$m_1^{R=0.8}$		> 60 GeV			-	
$j_1^{R=1.2}(b)$		✓			-	
$j_2^{R=1.2}(b)$	✓			_		
$\Delta R(b_1, b_2)$	> 1.0	_			> 1.4	
$m_{\mathrm{T}}^{b,\mathrm{max}}$		_			> 200 GeV	
S		> 25			> 14	
m_{T2,χ^2}		> 450 GeV < 450 GeV				

Y. Afik (CERN) Eur. Phys. J. C 80 (2020) 8, 737 26.07.2021 35 /


Scalar $LQ_3^u ightarrow t u/b au$



Y. Afik (CERN) Eur. Phys. J. C 80 (2020) 8, 737 26.07.2021

36 / 13

Scalar $LQ_3^u o t u/b au$

37 / 13

Y. Afik (CERN) Eur. Phys. J. C 80 (2020) 8, 737 26.07.2021

Scalar $L\overline{Q_3^d} ightarrow b u/t au$

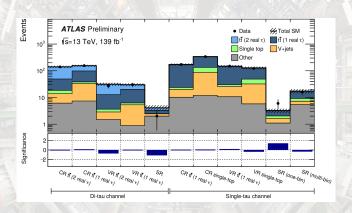
Variable		SR.A	CRzA	$VR_{A1}^{m_{CT}}$	$VR_{A1}^{m_{bb}}$	$VR_{A2}^{m_{CT}}$	$VR_{A2}^{m_{bb}}$	
Number of baseline leptons		0	2	0				
Number of high-purity leptons		_	2 SFOS	_				
$p_T(\ell_1)$	[GeV]	_	> 27	_				
$p_T(\ell_2)$	[GeV]	_	> 20	_				
$m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$	[GeV]	_	> 20	_				
$m_{\ell\ell}$	[GeV]	_	[81, 101]	_				
Number of jets		$\in [2, 4]$						
Number of b-tagged jets		2						
j_1 and j_2 b-tagged		✓						
$p_{\mathrm{T}}(j_1)$	[GeV]	> 150						
$p_T(j_2)$	[GeV]	> 50						
$p_{\mathrm{T}}(j_4)$	[GeV]	< 50						
$\min[\Delta\phi(\mathbf{p}_{1-4}^{\mathrm{jet}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})]$	[rad]	> 0.4						
$E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	> 250	< 100	> 250				
$\tilde{E}_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	_	> 250	_				
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$		> 0.25	_	_				
$\tilde{E}_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$		_	> 0.25					
m_{bb}	[GeV]	>	200 < 200 > 200 < 200 > 2			> 200		
$m_{\rm CT}$	[GeV]	>	250	> 250 [150, 250] > 250 [150, 25			[150, 250]	
$m_{ m eff}$	[GeV]	> 500 [500, 1500] > 1500			1500			

Y. Afik (CERN) JHEP 05 (2021) 093 26.07.2021 38 / 13

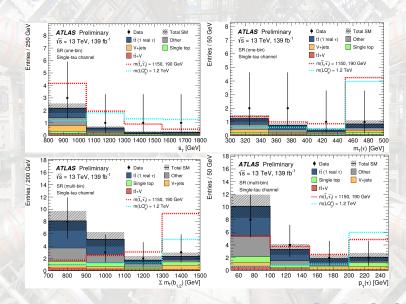
Scalar $L\overline{Q_3^d} ightarrow b u/t au$

		7/28	2 1/2	100
Variable		SRB	CRzB	VRzB
Number of baseline leptons		0	2	
Number of high-purity leptons		_	2 SFOS	
$p_{ m T}(\ell_1)$	[GeV]	_	> 27	
$p_{ m T}(\ell_2)$	[GeV]	_	> 20	
$m_{\ell\ell}$	[GeV]	_	[76, 106]	
$m_{ m T}({f p}_{ m T}^\ell,{f p}_{ m T}^{ m miss})$	[GeV]	_	> 20	
Number of jets		$\in [2,4]$		
Number of b-tagged jets		2		
$p_{\mathrm{T}}(j_1)$	[GeV]	> 100		
$p_{ m T}(j_2)$	[GeV]	> 50		
$\min[\Delta\phi(\mathbf{p}_{1-4}^{ ext{jet}},\mathbf{p}_{ ext{T}}^{ ext{miss}})]$	[rad]	> 0.4		
j_1 not b-tagged		_	/	_
$E_{ m T}^{ m miss}$	[GeV]	> 250	< 100	
$ ilde{E}_{ m T}^{ m miss}$	[GeV]	_	— > 250	
$m_{ m CT}$	[GeV]	< 250		
$w_{ m XGB}$		> 0.85	[0.3, 0.63]	> 0.63

Scalar $LQ_3^d o b u/t au$



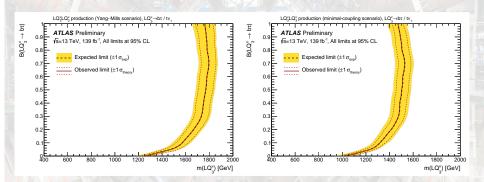
Scalar $LQ_3^u o b au/t u$ and $LQ_3^d o b u/t au$


Variable	CR $t\bar{t}$ (1 real τ)	CR single top	$VR t\bar{t} (1 real \tau)$	VR single top	SR
E ^{miss} [GeV]	> 280	> 280	> 280	> 280	> 280
ST [GeV]	[500,600]		> 600		> 800(600)
$\sum m_T(b1, b2) [GeV]$	[600,700]	> 800	[600, 700]	> 800	> 700
$m_T(\tau)$ [GeV]		< 50		[50, 150]	> 300(150)
$p_T(\tau)$ [GeV]		> 80		> 80	- (binned)

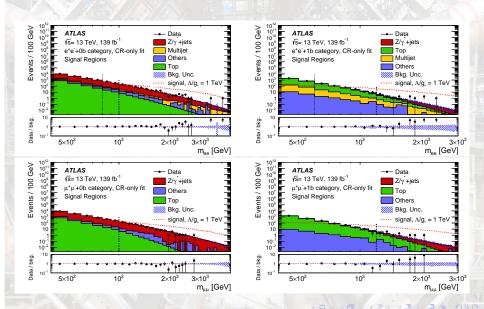
Y. Afik (CERN) ATLAS-CONF-2021-008 26.07.2021 4:

Scalar $LQ_3^u o b au/t u$ and $LQ_3^d o b u/t au$

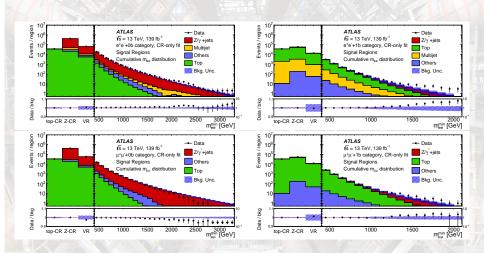
Scalar $LQ_3^u o b au/t u$ and $LQ_3^d o b u/t au$



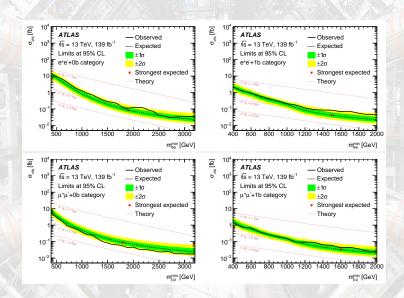
Scalar $LQ_3^u o b au/t u$ and $LQ_3^d o b u/t au$


Y. Afik (CERN) ATLAS-CONF-2021-008 26.07.2021 44 / 13

Vector $LQ_3^u o b au/t u$ and $LQ_3^d o b u/t au$


Y. Afik (CERN) Vector Leptoquarks 26.07.2021 45 / 13

bs\ell \ell Contact Interaction



26.07.2021

bs\ell \ell \text{Contact Interaction

bsll Contact Interaction

