Searches and techniques for boosted resonances (non-diboson) with the ATLAS detector

Chris Malena Delitzsch University of Arizona

On behalf of the ATLAS Collaboration

EPS-HEP2021

July 26 - 30, 2021

Search for boosted resonances

- Many theories for new physics predict the existence of new resonances (e.g. Z', W')
 - Topcolor-assisted-technicolor, two-Higgs-doublet, warped extra dimensions, composite Higgs
 - Focus here on $Z'
 ightarrow t ar{t}$ and W'
 ightarrow t b resonances

• Search strategy

- Hadronic decays have the highest branching ratios!
- Search for resonant structure in invariant $t\bar{t}$, tb mass distribution
- $\bullet\,$ Main challenge is the suppression of the dominant QCD background \rightarrow develop taggers

Boosted object tagging in a nutshell JETM-2018-03,ATL-PHYS-PUB-2020-017/2017-004

Q Removal of soft, wide-angle radiation, pile-up effects

- Constituent-level pile-up suppression: e.g. Constituent Subtraction, SoftKiller
- Grooming algorithm: e.g. trimming (Run-2 default up to now), Soft Drop (new default)

Boosted object tagging in a nutshell JETM-2018-03,ATL-PHYS-PUB-2020-017/2017-004

1 Removal of soft, wide-angle radiation, pile-up effects

- Constituent-level pile-up suppression: e.g. Constituent Subtraction, SoftKiller
- Grooming algorithm: e.g. trimming (Run-2 default up to now), Soft Drop (new default)

2 Jet substructure variables / taggers

- $\bullet\,$ Study the internal structure of the jet to distinguish e.g. top jets from $q/g\mbox{-initiated}$ jets
- Simple taggers: cut on jet mass + one other substructure variable (e.g. *N*-subjettiness)
- Complex taggers: Deep Neural Networks (DNN) trained on various substructure variables
- Taggers are calibrated in data via scale factors (SF) using $t\bar{t}$, multijet and γ +jet events

Searches and techniques for boosted resonances in ATLAS

Search for hadronically-decaying $t\bar{t}$ resonances

- Search performed using full Run-2 dataset (139 fb⁻¹)
- DNN tagger used to identify boosted top quark decays @ 80% signal efficiency + *b*-tagged variable-*R* track jet (77% WP)
- Data-driven background estimation using fit function
- Largest systematic uncertainties from tagging SFs (and *b*-tagging)
 - Dominated by generator differences when calibrating efficiency in MC to data

EXOT-2018-48

Event Display of $t\bar{t}$ event

EXOT-2018-48

Search for $W' \rightarrow tb \rightarrow q\bar{q}'b\bar{b}$!!!NEW!!!

ATLAS-CONF-2021-043

- Search for $W'
 ightarrow t ar{b}
 ightarrow q ar{q}' b ar{b}$ using 139 fb $^{-1}$
- Searches done separately for left- and right-handed gauge bosons
- Here: only results for right-handed W'
- See poster by Kuan-Yu Lin for more details!

Signal regions

- SR1: 50% top tag, 1 *b*-jet with $\Delta R(\text{top}, b\text{-jet}) < 1.0$ and one add. *b*-jet
- SR2: 80% but not 50% top tag, 1 *b*-jet with $\Delta R(\text{top}, b\text{-jet}) < 1.0$, one add. *b*-jet
- SR3: 50% top tag, 0 *b*-jet with $\Delta R(\text{top}, b\text{-jet}) < 1.0$ and one add. *b*-jet

Search for $W' \rightarrow tb$ - background estimation

IIINEWIII ATLAS-CONF-2021-043

- Discriminating variable: *tb* invariant mass
- $t\bar{t}$ background taken from simulation
- Data-driven multijet background estimate
- Various regions defined based on top tagging decision and *b*-jet requirements

Top tagging	0 small- <i>R</i> <i>b</i> -tags	1 small- <i>R b</i> -tag
50% WP	В	A: Signal Region 1
80% WP	D	C: Signal Region 2
Loose tag	F	E

$$N_{\text{SR1, SR2}}^{\text{bkg}}(i) = \left(N_{B,D}^{\text{data}}(i) - N_{B,D}^{t\bar{t}}(i)\right) \frac{N_{E}(i)}{N_{F}(i)}$$

Search for $W' \rightarrow tb$ - results **!!!NEW!!!**

ATLAS-CONF-2021-043

- Good agreement is observed between the data and prediction without any significant excess
- Limits set on $\sigma \times$ BR excluding right-handed W' with masses < 4.4 TeV
- Previous limits on right-handed W':
 - CMS excluded $m_{W'} < 3.4$ TeV (all-had) using 137 fb⁻¹: 2104.04831
 - ATLAS excluded $m_{W'} < 3.25$ TeV (all-had. + lepton+jets) using 36.1 fb⁻¹: 1807.10473.

Search for pair-production of vector-like guarks

- Large-R reclustered (RC) jets used to identify V/H, top
 - Reclustered jets: small-R jet input to jet clustering
- Multi-Class Boosted Object Tagger (MCBOT)
 - DNN trained with 18 inputs variables to identify jet origin
 - $p_{\rm T}$, mass, RC constituents (i.e $N_{\rm small-R}$) + 4-vector, *b*-tagging score of three leading $p_{\rm T}$ RC constituents
 - Simultaneous identification of V/H/top jets
 - In case of ambiguities, choose tag with highest DNN score

ATLAS-CONF-2021-024

See also Mesut's talk later

How to improve the sensitivity to new physics in the future?

JETM-2018-06

- **1** Develop more sophisticated taggers, e.g. use jet constituents as input
- Overlap new, more advanced jet definitions
 - Most analyses in ATLAS use large-R jets reconstructed only from calorimeter info
 - At high p_{T} , full decay sometimes reconstructed within one topological cluster
 - Different algorithms used to take advantage of inner detector tracks
 - Particle Flow (PFlow): takes advantage of excellent track p_{T} resolution at low p_{T}
 - Track-CaloClusters (TCC): uses tracks angular information at high p_{T} + cluster splitting

July 26 - 30, 2021

Unified Flow Objects (UFOs)

- New input type developed that takes advantage of PFlow and TCC algorithm
- UFOs outperform other inputs over broad range
- ATLAS re-optimised the choice of grooming algorithm using various metrics: tagging perf., mass resolution, pile-up dependence

JETM-2018-06

Top tagging optimisation for UFO jets

ATL-PHYS-PUB-2021-028

IIINEWIII

- DNN top tagger was re-optimised for new UFO jet collection
 - R = 1.0 UFO jets (with const. pile-up suppression (CS+SK)) + Soft Drop ($\beta = 1, z_{cut} = 0.1$)
- Input variables: τ_1 , τ_2 , τ_3 , τ_4 , $\sqrt{d_{12}}$, $\sqrt{d_{23}}$, ECF₁, ECF₂, ECF₃, C_2 , D_2 , L_2 , L_3 , Q_W , T_M
- $\bullet\,$ Two taggers developed for inclusive tops and contained tops at 50/80% sig. eff.
- Performance compared for new UFO taggers with respect to previous LCTopo taggers
 - When applied to the same signal events, UFO taggers outperform LCTopo taggers
- Generator differences are one of the main uncertainties in the calibration of boosted taggers

Summary

- Many exciting searches for new physics have been performed
 - Focussed here only on final states involving hadronically-decaying top quarks
 - New impressive limits set on right-handed W' gauge bosons
 - Unfortunately no discover yet but we will keep increasing the sensitivity to smaller signal cross-sections by improving the performance of boosted top/W/Z/H taggers
- Analyses presented here use cutting-edge techniques for boosted top identification
- DNN taggers developed to identify single objects as well as multiclass object tagging
- New inputs developed for jet reconstruction that significantly enhance performancee over broad range

Backup

Data-driven background estimation in W' ightarrow tb search

- VR: validation region
- TR: template region
- CR: control region
- SR: signal region

Top Tagging Optimisation for UFO Jets

ATL-PHYS-PUB-2021-028

!!!NEW!!!

- DNN top tagger was re-optimised for new UFO jet collection
 - anti- $k_t R = 1.0$ jets reconstructed from UFOs with constituent pile-up suppression (CS+SK)
 - ullet Grooming algorithm: Soft Drop with $\beta=1$ and $z_{\rm cut}=0.1$
- Input variables: τ_1 , τ_2 , τ_3 , τ_4 , $\sqrt{d_{12}}$, $\sqrt{d_{23}}$, ECF₁, ECF₂, ECF₃, C_2 , D_2 , L_2 , L_3 , Q_W , T_M
- Two taggers developed for inclusive tops and contained tops
 - Contained tops: full top quark decay reconstructed within jets
 - Particle-level information used to define contained jets using mass and splitting scale
 - New labelling reduces generator dependence

Inputs to jet reconstruction - Topoclusters

• Group of topologically connected cells based on their significance

$$\varsigma_{\text{cell}}^{\text{EM}} = rac{E_{\text{cell}}^{\text{EM}}}{\sigma_{\text{noise, cell}}^{\text{EM}}} = rac{E_{\text{cell}}^{\text{EM}}}{\sqrt{\left(\sigma_{\text{noise}}^{\text{electronic}}
ight)^2 + \left(\sigma_{\text{noise}}^{\text{pile-up}}
ight)^2}}$$

• Limitations: high p_{T} objects can be reconstructed within one topocluster

July 26 - 30, 2021

Inputs to jet reconstruction - Particle Flow

- Benefits from better p_{T} resolution of tracks at low p_{T}
- Match tracks to clusters and subtract energy of charged particle cell-by-cell
- We slowly switch off Particle Flow at higher momenta

Inputs to jet reconstruction - TCC

- Boosted object can be reconstructed within one cluster at high p_{T}
- Split cluster using tracking information (excellent angular resolution)

$$\frac{\min(\boldsymbol{p}_{\mathrm{T},1},\boldsymbol{p}_{\mathrm{T},2})}{\boldsymbol{p}_{\mathrm{T},1}+\boldsymbol{p}_{\mathrm{T},2}} > z_{\mathrm{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

$$\frac{\min(\boldsymbol{p}_{\mathrm{T},1},\boldsymbol{p}_{\mathrm{T},2})}{\boldsymbol{p}_{\mathrm{T},1}+\boldsymbol{p}_{\mathrm{T},2}} > z_{\mathrm{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

