

Searches for new physics in CMS in events with jets in the final state

M.Diamantopoulou, NKUA On behalf of the CMS Collaboration

Outline

- Motivation
- General Methodology

- Results
- > CMS-EXO-19-012
- > CMS-EXO-20-008
- > CMS-EXO-20-007
- > CMS-EXO-20-002

Conclusions

Motivation

- The Standard Model (SM) of particle physics is incomplete :
 - Why is there an imbalance of matter and antimatter in the universe?
 - How does gravity fit into our model? Why are there exactly three families of fundamental particles?
 - What is 95% of the Universe made of?

Composition Of The Universe

• Many models of physics that extend the SM often require new particles that couple to quarks and/or gluons and decay to jets.

Jet Resonance Search in CMS

- There is a variety of recent resonance searches in CMS, with jets in final states. A selection of Full Run II results will be discussed in this talk:
 - High Mass Dijet Resonance Search (CMS-EXO-19-012, paper: arXiv:1911.03947)
 - B-tagged Dijet Resonance Search (CMS-EXO-20-008)
 - Trijet Resonance Search(CMS-EXO-20-007)
 - Search for a right-handed W boson and a heavy neutrino (in a final state considering of two same flavor leptons and two quarks). (CMS-EXO-20-002).

General Analysis Methodoloy

- Analysis Strategy : search for a narrow or wide resonance on top of a smoothly falling background.
- Background Estimation :
 - Data-driven : Fitting the invariant mass with an empirical function.
 - Semi data-driven: Predicting the SM background from control regions with transfer functions to the signal region from simulation.

Invariant mass

- **Signal Modeling** : Intrinsic signal shape, either narrow (with width smaller than the detector resolution) or wide or using generic gaussian shape.
- **Limit extraction & Significance Estimation**: Fit the jet invariant mass spectrum using background and signal templates with systematics as nuisance parameters.

Dijet High Mass Search: New Background Method CMS [EXO-19-012]

New data driven background estimation technique:

> Ratio Method uses data in the the control region at high $|\Delta \eta|$ to estimate the background in the signal region at low $|\Delta \eta|$.

Robust technique, complementary to the standard fit method, with less dependence on empirical parameterizations. 6

Second Highest Dijet Mass Event CMS [EXO-19-012]

- Second highest dijet mass event from 2017 Data, at 8 TeV has unusual 4-jet topology.
 - ➢Wide jets each have a mass of 1.8 TeV.
 - Probability of getting such a 4jet event from QCD is approximately 10⁻⁴ .[Dobrescu, Harris and Isaacson, arXiv:1810.09429]

• Possible candidate for a massive resonance decaying to pairs of dijet resonances.

Dijet Mass Spectrum & Limits CMS [EXO-19-012]

Dijet mass [TeV]

• Data are well described by both methods. There is no evidence for dijet resonance.

• Expected mass limits improve by 300-500 GeV compared to our previously published 2016 results.

• For $\Gamma/M=0.25$, this search excludes dark matter mediators with mass less than 4.7 TeV. This is the best LHC limit for searches utilizing jets!

B-tagged Search CMS [EXO-20-008]

- Search for resonances decaying into b quarks.
- Extension of inclusive dijet resonance search, by requiring one or both leading jets to be b-tagged using the DeepJet tagger.
- Signal Models:
 - b*→ bg benchmark model (1 b-jet final state). Considered production modes:
 - $-bg \rightarrow b^*$

-qq → b*+b

- \blacktriangleright Z' \rightarrow bb benchmark model (2 b-jets final state):
- -Heavy Vector Triplet (HTV) model with similar coupling to fermions as to gauge bosons with suppressed fermionic couplings

B-tagged Search: b* CMS [EXO-20-008]

 Data of each year are well described by the fit function. Here we show the 208 Data. There is no evidence for b-tagged resonance.

• The excited b quark is excluded at 95% CL for masses less than 4.0 TeV. This is the most stringent exclusion of the excited b quark.

B-tagged Search: Z' CMS [EXO-20-008]

- Search with 3 distinct b-tagging categories:
 - One leading jet is b-tagged (1b)
 - Both leading jets are b-tagged (2b)
 - At least one (untagged) jet contains a muon.
- Exclusion of HVT Model and Sequential Standard Model Z' with $m_{z'}$ <2.4TeV

Trijet Search CMS [EXO-20-007]

• The minimum angle between P_1 and P_2 depends only on the mass ration ρ_m

$$\rho_m = M_{Res2}/M_{Res1}$$

$$\alpha_{min} = \frac{2M_{Res2}}{E_{Res2}} \rightarrow \alpha_{min} = \frac{4\rho_m}{1+\rho_m^2}$$

- In this analysis, $\rho_m < 0.2$, and P_1 , P_2 jets are merged m
- Discrimination between signal and QCD background, by exploiting jet substructure information and kinematics of the decay.

CMS

Trijet Search: Event Categories CMS [EXO-20-007]

• Optimization of the number and ranges of categories, to achieve the best sensitivity:

13

- ➤ 22 categories for M_{R2}<600 GeV</p>
- ➢ 9 categories for 600GeV<M_{R2}<1200 GeV</p>
- > a single cross shaped category for M_{R2} >1200 GeV

Trijet Search: Fit & Results CMS [EXO-20-007]

- Simultaneous fits in all categories.
- M_{R1} =2.9 TeV and M_{R2} =0.4 TeV has the highest local significance 3.1 σ and global significance of 2 σ .
- By exploring a novel experimental signature, we extend significantly the experimental exclusion of this benchmark model of new physics at the LHC

Right Handed W decaying to heavy neutral lepton CMS [EXO-20-002]

- Search for new charged boson (W_R) and heavy neutrino (N) under the leftright symmetric model (LRSM)
- New search region: Boosted N, using lepton and fastjet mass.

- Analysis regions:
- ➢Flavor CR used to estimate normalization of tt+tW.
- DYCR used to derive corrections and estimate normalization of DY MC

Results CMS [EXO-20-002]

- Electron channel:local significances of 2.2 σ and 2.5 σ for the m_{WR},m_N=(5000, 200) GeV and (5000, 3000) GeV mass points
- Muon channel:local significance of 1.0σ for (5000, 3000) GeV mass point

Results CMS [EXO-20-002]

- Resolved and boosted results are combined
- Resolved results
 - For $m_N = 1/2 m_{WR}$, ee: $m_{WR} = 4500 \rightarrow 4800 \text{ GeV}$ excluded.
 - For $m_N = 1/2 m_{WR}$, $\mu\mu$: $m_{WR} = 4600 \rightarrow 5100 \text{ GeV}$ excluded
- Significant improvement in boosted channel
 - For m_N =200GeV, ee(µµ): m_{WR} of 4600 (5400) GeV excluded

Conclusions

• Search for hadronic resonances in CMS

> No significant deviations from SM so far, but a few with < 3 σ excesses.

- \succ Constraints in several benchmark models
- More results imminent!
- Significant improvements due to
 - \succ Data driven methods to estimate the background.
 - \succ Increased luminosity with full RunII datasets.
 - New final states

• Run3 is **ahead** of us!

BACK UP

From: arXiv:2008.06282

W+γ Search CMS [EXO-20-001], arXiv:2106.10509

W+γ Search CMS [EXO-20-001]

- The largest excess observed at 1.58 TeV corresponds to a local significance of 2.8 (3.1) σ for narrow (broad) signals.
- The results reported are the most restrictive limits384to date on the existence of such resonances 21

Description of Ratio Method

• The "ratio method" predicts the QCD background in the SR by multiplying the data in CRhigh by a transfer factor determined from the simulation.

 $N_{\rm SR}^{\rm Prediction} = R \times N_{\rm CR_{\rm high}}^{\rm Data}$

 $R = \mathbf{C} \times N_{\mathrm{SR}}^{\mathrm{Simulation}} / N_{\mathrm{CR}_{\mathrm{high}}}^{\mathrm{Simulation}}$

• The transfer factor is corrected with an empirical function, using CRmiddle as a calibration, to account for differences between data and LO simulation (NLO, EW effects, etc.)

$$R_{\text{aux.}} = N_{\text{CR}_{\text{middle}}} / N_{\text{CR}_{\text{high}}}$$
$$C = \frac{R_{\text{aux.}}^{\text{Data}}}{R_{\text{aux.}}^{\text{Simulation}}} = p_0 + p_1 \times (m_{\text{jj}} / \sqrt{s})^3$$

Transfer Factor

We correct the simulated transfer factor using a 2-parameter fit to the double ratio

> Using the CR_{middle}/CR_{high} we constraint the theoretical and experimental systematics.

Wide Resonance Limits

• Wide resonance limits are well behaved as a function of resonance mass and width.

• For Spin1 qq resonances we show limits up to the resonance mass for which we trust the signal Shapes.

b* signal shapes

Signal Efficiency vs Z' mass

Fits for >=1 btag

Fits for Z'

Fits for Z'

Systematic Uncertainties

Uncertainty Source	Uncertainty	Implementation
Jet Energy Resolution	10%	of RECO resolution
Jet Energy Scale	2%	shift of m_{jj}
Luminosity	2.5% in 2016/2018, 2.3% in 2017	InN
b tagging SF Weight	0.2-31.2%	InN
Muon SF Weight	44.9-60.6%	InN

CMS

Observables 3-jet

Physics Observables:

- *m_{jj}*: dijet mass
- *m_{Res2jet}*: Res2 jet mass
- *m*_{P3jet}: P3 jet mass

Res2-jet identification:

- Res2 candidate is the jet with <u>smallest</u> τ_{21} value (N-subjettiness ratio)
- <u>No cut on τ₂₁</u>
- Wrong ID in ~30% of events (vertical band)

Systematic Uncertainties

JES up fit

JMS down fit

JER fit

- Main systematic uncertainties:
 - Jet Energy Scale (JES)*: $\sigma_{JES} = \pm 2\%$
 - Jet Energy Res (JER)*: $\sigma_{JER} = \pm 10\%$
 - Jet Mass Scale (JMS)**: $\sigma_{JMS} = \pm 3\%$
 - Jet Mass Res (JMR)**: $\sigma_{JMR} = \pm 10\%$
 - N-subjettiness (τ_{21}): $\sigma_{\tau_{21}} = \pm 10\%$
- Jet uncertainties effects:
 - *JES* \Rightarrow shift of m_{jj} signal peak
 - *JER* \Rightarrow smearing of m_{jj} signal peak
 - JMS, JMR, τ_{21} ⇒ changes in normalization (Nsig)
- Use of average signal m_{jj} shapes
 - additional uncertainty on signal peak position and width
- Overall impact on xsec upper limits ~10%

eµ sideband

Background estimation: DY

- DY CR: same selection as signal region except 60 < m_{ll} < 150 GeV
 - For boosted,
 - remove LSF > 0.75 requirement
 - no constraint on l_{Loose} direction
- Z-p_T reweighting following same procedure as <u>EXO-19-016</u> except use NLO DY sample instead of data
 - Higher order correction binned in GEN Z mass and p_T applied to LO HT binned DY sample (backup)
- Normalization scale factor obtained after Z-p_T reweighting applied

Systematic Uncertainties

			\sim			
Source	Bkgd./Signal process	Year-to-year treatment	ee bkgd. (%)	ee signal (%)	μμ bkgd. (%)	μμ signal (%)
Integrated luminosity	All bkgd./Signal	Uncorrelated	2.3-2.5 (2.3-2.5)	2.3-2.5 (2.3-2.5)	2.3-2.5 (2.3-2.5)	2.3-2.5 (2.3-2.5)
Electron reconstruction	All bkgd./Signal	Correlated	1.0-1.6 (0.5-0.8)	0.8-1.4 (0.4-0.8)	_	_
Electron energy resolution	All bkgd./Signal	Correlated	< 0.1 (< 0.1)	< 0.1 (< 0.1)	_	_
Electron energy scale	All bkgd./Signal	Correlated	0.5-1.8 (0.5-2.3)	0-0.3 (0-0.5)	_	_
Electron identification	All bkgd./Signal	Correlated	3.1-3.2 (1.8-1.9)	4.1-4.4 (2.1-2.4)	_	_
Electron trigger	All bkgd./Signal	Uncorrelated	0-0.1 (0.2-0.4)	< 0.1 (0.1-0.2)	_	_
Muon reconstruction	All bkgd./Signal	Correlated	_	_	0.4-1.0 (0.3-0.7)	4.4-36.8 (5.6-30.7)
Muon momentum scale	All bkgd./Signal	Correlated	_	_	0.4-2.5 (0.4-3.6)	0.1-0.2 (0.1-0.3)
Muon identification	All bkgd./Signal	Correlated	_	_	0.2-1.2 (0.1-0.6)	0.2-1.1 (0.1-0.5)
Muon isolation	All bkgd./Signal	Correlated	_	_	0.1-0.2 (0-0.1)	0.1-0.2 (0-0.1)
Muon trigger Paper	All bkgd./Signal	Uncorrelated	_	_	0.1-0.2 (0.1-0.2)	0.7-1.6 (0.5-1.3)
Jet energy scale	All bkgd./Signal	Correlated	1.9-4.1 (0.9-2.0)	0-0.2 (0-0.3)	2.1-3.4 (0.6-1.0)	0-0.2 (0-0.4)
Jet energy resolution	All bkgd./Signal	Uncorrelated	0.5-1.4 (0.7-1.9)	0-0.3 (0-0.4)	0.2-1.2 (0.2-1.1)	0-0.3 (0-0.3)
LSF scale factor	All bkgd./Signal	Uncorrelated	(6.88.7)	(6.7-8.7)	(5.8-7.1)	(5.8-7.1)
Pileup modeling	All bkgd./Signal	Correlated	0.2-1.1 (0.5-1.1)	0.1-0.8 (0.2-0.9)	0.3-0.5 (0.3-1.1)	0.1-0.5 (0-0.6)
$Z-p_T$ correction	DY+jets	Correlated	2.7-3.3 (2.7-3.6)	_	2.8-3.2 (2.8-3.4)	_
DY reshape	DY+jets	Correlated	4.2-4.8 (4.9-5.8)	_	4.3-4.8 (5.1-5.5)	_
Nonprompt background normalization	Nonprompt	Uncorrelated	100 (100)	_	100 (100)	_
Rare SM background normalization	Others	Correlated	50 (50)	_	50 (50)	_
PDF error	Signal	Correlated	_	5.9-11.1 (8.8-39.9)	_	2.8-6.8 (17.5-40.6)
α _S	Signal	Correlated	_	0-0.2 (0.2-1.3)	_	0-0.2 (0.2-1.2)
renormalization/factorization scales	Signal	Correlated	—	0-0.1 (0.3-2.3)	—	0-0.1 (2.1-2.9)

Results

