



# Searches for New Physics in final states with leptons or photons with CMS

Jan-Frederik Schulte On behalf of the CMS Collaboration

EPS 2021, Worldwide

27/7/2021

#### Searching for new physics with leptons and photons

- Leptons and photons are reconstructed and identified with high efficiency and precisions
  - Offers handles to suppress backgrounds and identify signs of new physics



- Searches for new physics in dilepton and diphoton final states, especially at high mass, are a staple of the LHC search program
- With these searches mature and reaching the limits of their sensitivity at √s = 13 TeV, innovative search strategies are being explored to target more complex final states and using novel analysis techniques
- Established analyses are branching out into new interpretations and indirect searches
- Here I will cover recent results with prompt leptons and photons
   For searches targeting long-lived signatures, see Bryan Cardwell's talk at 16:00h

## High mass dilepton pairs

- Search for a deviation from SM Drell-Yan background in high-mass dilepton pairs
- Dedicated reconstruction algorithms and IDs for TeV-scale leptons





- Simple resonance search on full Run 2 dataset has been public since fall of 2019
- CMS recently published a much more detailed study with many more interpretations, including non-resonant signals

- Backgrounds estimated mostly from simulation, using Powheg corrected to NNLO QCD and NLO EWK for DY background
- Unbinning ML fit used for resonant signals, binned likelihoods used for non-resonant analysis
- Limits are set for spin-1 (up to 5.15 TeV) and spin-2 (2.47-4.87 TeV) resonances
- Lower limits on the mass of a DM mediator ranging from 1 to 4.6 TeV are set for different benchmark models

arXiv:2103.02708. submitted to JHEP

## High mass dilepton pairs



- Inspired by recent hints of lepton-flavor violation, the dielection and dimuon mass spectra are compared as a function of mass
- Spectra are unfolded to particle level and corrected for different acceptance of the two channels
- Some moderate deviations from unity at high mass, from excess events in the dielectron channel, but no smoking gun for lepton-flavor violation arXiv:

- Searched for non-resonant deviations in the mass spectrum, interpreted in a four-fermion Contact Interaction and the ADD model of extra dimensions
- Distribution of the scattering angle cos θ\* is exploited to increase sensitivity
- Limits on the UV cutoff range from 24 to 36 TeV in the CI model and 5.9 TeV to 8.9 TeV for the ADD model



#### arXiv:2103.02708, submitted to JHEP

## Search in lepton + $E_{ m T}^{ m miss}$



- Limits are calculated using a multi-bin shape analysis
- Limit on  $W_{\rm SSM}'$  reaches 5.7 TeV for the combination of electron and muon channels
- Use a single-bin counting approach to provide model-independent cross section limits as a function of the lower mass cutoff

# - Search for new physics in the lepton + ${\it E}_{\rm T}^{\rm miss}$ final state

- Motivated by models with heavy gauge bosons W', excited Kaluza-Klein states or R-Parity Violating SUSY
- Targeting back-to-back signature of lepton and  $E_{\rm T}^{\rm miss}$  with cuts on lepton  $p_{\rm T}/$   $E_{\rm T}^{\rm miss}$  and the  $\Delta\phi$  between them



#### CMS-PAS-EXO-19-017

## Search in lepton + $E_{\rm T}^{\rm miss}$



- New physics beyond the direct kinematic reach of the search could still modify the tail of the  $M_{\rm T}$  spectrum
- Can be described in a general way using 6-dimensional operators containing the H, W, and B fields
- High mass behavior sensitive to the parameters Y and W (https://arxiv.org/abs/1609.08157)
- With this search, the W parameter can be constraint significantly compared to previous LEP results

#### CMS-PAS-EXO-19-017



- Interpret result for  $\tilde{\tau}$  production in RPV SUSY
- Limits are set on the RPV couplings  $\lambda_{231}$  and  $\lambda_{132}$  for different values of the production coupling  $\lambda_{3xx}$



#### $W\gamma$ resonances

- $W\gamma$  resonances are predicted in a variety of models with extended Higgs sectors, technicolor models, or folded supersymmetry
- Analysis targets hadronic decays of heavily boosted Ws, reconstructed as large-radius jets indentified using the soft-drop jet mass and the N-subjettiniess ratio τ<sub>21</sub>
- Signal further separated from the dominant  $\gamma$ +jets background using  $\eta_{\gamma}$ ,  $\eta_J$ , the scattering angle  $\cos \theta_{\gamma}^*$ and the ratio of  $p_T^{\gamma}$  to  $m_{J\gamma}$



- Signal acceptance  $\times$  efficiency ranges between 6 and 12% for spin-0 and 10 and 16% for spin-1 particles
- Background is modeled with a analytical function chosen to balance goodness-of-fit with the number of free parameters
- Signal modeled with a Crystal Ball summed with one (narrow resonances) or two (5% width) Gaussians

arXiv:2106.10509, submitted to PLB

## $W\gamma$ resonances



- $\approx 3 \sigma$  deviation observed at 1.58 TeV. Corrected for look-elsewhere-effect, this reduces to 1.1-1.7  $\sigma$ , depending on the width
- Limits are set for spin-0 and spin-1 signals for narrow and wide resonances
- In scalar (vector) triplet benchmark models, the excluded mass range is 0.75-1.4 (1.15-1.35)  ${\rm TeV}$
- Model independent limits as a function of the lower mass cutoff are also provided





arXiv:2106.10509, submitted to PLB

#### Dark Matter in association with Dark Higgs

• NEW for EPS



- In scenarios where DM particles acquire mass via a Dark Higgs boson s, these could be produced at the LHC in association with the DM particles
- This analysis focuses on decays  $s \rightarrow$  WW, with further leptonic decays of the W bosons
- Events with two leptons with  $m_{\ell\ell}>$  20 GeV and  $p_{
  m T}^{\ell\ell}>$  30 GeV are selected
- + WZ and ZZ, as well as  $\mathrm{t}\overline{\mathrm{t}}$  are reduced by vetoing third leptons and b-jets
- DY backgrounds are further rejected with requirements on  $E_{\mathrm{T}}^{\mathrm{miss}}$  and how it aligns with the leptons

#### CMS-PAS-EXO-20-013

#### Dark Matter in association with Dark Higgs



- Event sample is split into three bins of  $\Delta R(\ell \ell)$ , which are in turn split into multiple bins in  $m_{\ell \ell}$  and transverse mass  $m_{\rm T}(\ell^{p_{\rm T},min}, E_{\rm T}^{\rm miss})$
- Background estimate mostly from MC (except non-prompt leptons)
- MC sample normalization obtained from dedicated data control regions for the DY, WW, and top backgrounds

#### CMS-PAS-EXO-20-013

#### Dark Matter in association with Dark Higgs



- Limits are set in the m<sub>Z'</sub> m<sub>s</sub> plane for different values of m<sub>χ</sub>
- Most stringent limits are set for  $m_{\chi} = 150 \text{ GeV}$ , where  $m_s$  masses up to 300 GeV are excluded for  $480 < m_{Z'} < 1200 \text{ GeV}$
- Highest limit on  $m_{Z'}$  reaches 2 TeV for  $m_s = 160 \text{ GeV}$

#### Summary

- Final states with leptons and photons offer great sensitivity to many models of new physics
  - High efficiency and great momentum/energy resolution helps suppress backgrounds
- Analyses using these objects range from very simple dilepton signatures to significantly more complex final states
- Analyses with more simple final states are often quite mature and expanding to unconventional interpretations and adding novel measurements
- Similarly, new final states are explored, constantly expanding the phase space coverage of the CMS search program
- Only four recent examples shown here. Many more results as well as summary plots are available at http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html

# Additional Material

#### High mass dilepton - acceptance $\times$ efficiency



#### High mass dilepton - Systematic uncertainties

| Source                             | Uncertainty                          |
|------------------------------------|--------------------------------------|
| Electron selection efficiency      | 6–8%                                 |
| Muon selection efficiency          | 1-2% (two-sided), 0-6.5% (one-sided) |
| Mass scale uncertainty             | 1–3%                                 |
| Dimuon mass resolution uncertainty | 8.5–15%                              |

Figure 1: Uncertainties for resonance search

|                                               | Impact on background [%] |                            |      |                               |  |
|-----------------------------------------------|--------------------------|----------------------------|------|-------------------------------|--|
| Uncertainty source                            |                          | $m_{ellell} > 1  { m TeV}$ |      | $m_{ellell} > 3 \mathrm{TeV}$ |  |
|                                               | ee                       | μμ                         | ee   | μμ                            |  |
| Lepton selection efficiency                   | 6.8                      | 0.8                        | 6.4  | 1.3                           |  |
| Muon trigger efficiency                       | _                        | 0.9                        | _    | 0.9                           |  |
| Mass scale                                    | 7.0                      | 2.7                        | 15.4 | 2.4                           |  |
| Dimuon mass resolution                        | _                        | 0.1                        | _    | 0.6                           |  |
| Pileup reweighting                            | 0.3                      | _                          | 0.5  | _                             |  |
| Trigger prefiring                             | 0.5                      | _                          | 0.2  | _                             |  |
| PDF                                           | 3.7                      | 3.0                        | 9.4  | 10.2                          |  |
| Cross section for other simulated backgrounds | 0.6                      | 0.8                        | 0.2  | 0.4                           |  |
| Z peak normalization                          | 2.3                      | 5.0                        | 2.0  | 5.0                           |  |
| Simulated sample size                         | 0.4                      | 0.4                        | 1.3  | 1.6                           |  |

Figure 2: Uncertainties for non-resonant search

#### High mass dilepton - Scattering angle



## Lepton + $E_{\rm T}^{\rm miss}$ - Tables

• Event yield in the electron, muon, and combined channel

| $M_{\rm T}$ >1.0 TeV | $M_{\rm T}>$ 2.0 TeV                                                                                                                                       | $M_{\rm T}>3.0~{\rm TeV}$                              | $M_{\rm T}>4.0~{ m TeV}$                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 831                  | 23                                                                                                                                                         | 1                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                |
| $835\pm 64$          | $21.1\pm2.5$                                                                                                                                               | $1.16\pm0.24$                                          | $0.066\pm0.029$                                                                                                                                                                                                                                                                                                                                                                                                  |
| $211\pm35$           | $155\pm29$                                                                                                                                                 | $93\pm20$                                              | $1.95\pm0.68$                                                                                                                                                                                                                                                                                                                                                                                                    |
| $8.0\pm2.1$          | $4.8\pm1.7$                                                                                                                                                | $3.5\pm1.5$                                            | $2.5\pm1.3$                                                                                                                                                                                                                                                                                                                                                                                                      |
| 829                  | 21                                                                                                                                                         | 0                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                |
| $805\pm83$           | $21.7\pm2.9$                                                                                                                                               | $1.05\pm0.34$                                          | $0.089\pm0.040$                                                                                                                                                                                                                                                                                                                                                                                                  |
| $192\pm28$           | $141\pm24$                                                                                                                                                 | $80\pm19$                                              | $6.4 \pm 1.8$                                                                                                                                                                                                                                                                                                                                                                                                    |
| $11.0\pm1.6$         | $6.6\pm1.1$                                                                                                                                                | $4.6\pm1.1$                                            | $3.2\pm0.9$                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | $\begin{array}{c} M_T > 1.0 \ \text{TeV} \\ 831 \\ 835 \pm 64 \\ 211 \pm 35 \\ 8.0 \pm 2.1 \\ 829 \\ 805 \pm 83 \\ 192 \pm 28 \\ 11.0 \pm 1.6 \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccc} M_T > 1.0  {\rm TeV} & M_T > 2.0  {\rm TeV} & M_T > 3.0  {\rm TeV} \\ \hline 831 & 23 & 1 \\ 835 \pm 64 & 21.1 \pm 2.5 & 1.16 \pm 0.24 \\ 211 \pm 35 & 155 \pm 29 & 93 \pm 20 \\ 8.0 \pm 2.1 & 4.8 \pm 1.7 & 3.5 \pm 1.5 \\ 829 & 21 & 0 \\ 805 \pm 83 & 21.7 \pm 2.9 & 1.05 \pm 0.34 \\ 192 \pm 28 & 141 \pm 24 & 80 \pm 19 \\ 11.0 \pm 1.6 & 6.6 \pm 1.1 & 4.6 \pm 1.1 \\ \end{array}$ |

• Limit summary

| Model                               | Parameter                                                                                                                                      | Channel               | Observed Limit (Expected Limit                                                                                                                                                             |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SSM W'                              | $\begin{array}{l} M_{W'} \\ (g_{W'}/g_W = 1) \end{array}$                                                                                      | е<br>µ<br>е+µ         | $\begin{array}{l} M_{W'} < 5.4 \; {\rm TeV} \; (< 5.3 \; {\rm TeV}) \\ M_{W'} < 5.6 \; {\rm TeV} \; (< 5.5 \; {\rm TeV}) \\ M_{W'} < 5.7 \; {\rm TeV} \; (< 5.6 \; {\rm TeV}) \end{array}$ |
| split-UED $W_{KK}^{\left(2\right)}$ | 1/R<br>(if $\mu = 2$ TeV)                                                                                                                      | $e \\ \mu \\ e + \mu$ | 1/R < 2.7  TeV (< 2.6  TeV)<br>1/R < 2.7  TeV (< 2.7  TeV)<br>1/R < 2.8  TeV (< 2.7  TeV)                                                                                                  |
| RPV SUSY $\tilde{\tau}$             | $\begin{array}{l} \lambda_{\rm decay=231,132} \\ ({\rm if}\; \lambda_{3ij}^\prime = 0.5, M_{\overline{\tau}} \approx 1~{\rm TeV}) \end{array}$ | е<br>µ                | $\begin{array}{l} \lambda_{231} > 3.7 \times 10^{-3} \; (> 4.6 \times 10^{-3}) \\ \lambda_{132} > 4.7 \times 10^{-3} \; (> 4.7 \times 10^{-3}) \end{array}$                                |
| EFT                                 | W oblique parameter                                                                                                                            | $e + \mu$             | Best-Fit $W = -0.00012^{+0.00005}_{-0.00006}$                                                                                                                                              |

#### Lepton + $E_{\rm T}^{\rm miss}$ - split-UED limits

- Spacetime extended by an additional dimension of radius  $\ensuremath{\mathrm{R}}$
- Signature: Kaluza-Klein excitations of the W boson with mass  $M(W_{KK}^n) = \sqrt{M_W^2 + (n/R)^2}$
- Additional parameter: bulk mass parameter  $\mu$



## $\mathbf{W}\boldsymbol{\gamma}$ - Selection

#### Hadronic W

- anti- $k_{
  m T}$  jets with R= 0.8,  $p_{
  m T}>$  225 GeV,  $\Delta R({
  m jet},\gamma)>$  1.1
- Corrected for PU using PUPPI
- Groomed with soft drop ( $eta=0,~z_{
  m cut}=0.1$ )

#### Signal region definition

- $68\,\mathrm{GeV} < m^{SD}_\mathrm{j} < 94\,\mathrm{GeV}$
- $|\eta_{\gamma}| < 1.44$
- $|\eta_{\rm J}| < 2.0$
- $\tau_{21} < 0.35$
- $p_{\mathrm{T}}^{\gamma}/m_{\gamma\mathrm{J}} > 0.37$
- $\cos heta_{\gamma}^* < 0.6$

#### $\mathbf{W}\gamma$ - Systematic uncertainties

• Limits for resonances with a width of 5%

| Source                                          | Effect on the signal yield (%) | Combined (%) |
|-------------------------------------------------|--------------------------------|--------------|
| Integrated luminosity                           | 2.5/2.3/2.5                    | 1.8          |
| Trigger efficiency                              | 1.0/2.3/1.0                    | 0.9          |
| Photon ident. efficiency                        | 4.7/6.0/3.0                    | 4.4          |
| Pileup                                          | 1.0/2.0/1.0                    | 1.3          |
| PDF                                             | 2.0                            | 2.0          |
| Wtagging efficiency                             | 11/7.4/3.2                     | 3.9          |
| Jet energy scale and resolution <sup>†</sup>    | 1.3                            | 0.8          |
| Photon energy scale and resolution <sup>†</sup> | 0.5/1.0/1.0                    | 0.9          |
| Total                                           | 12.6/10.6/5.8                  | 6.7          |

#### $\mathbf{W}\gamma$ - wide resonance limits

• Limits for resonances with a width of 5%



## Dark Higgs - $M_{\rm T}(p_{\rm T}^{min}, E_{\rm T}^{\rm miss})$



#### **Dark Higgs - Selection**

| Quantity                                             | Selection |
|------------------------------------------------------|-----------|
| Number of leptons                                    | 2         |
| Lepton flavors                                       | еµ, µе    |
| Lepton charges                                       | Opposite  |
| Additional leptons                                   | 0         |
| $p_{\mathrm{T}}^{\ell\mathrm{max}}$                  | > 25      |
| $p_{\rm T}^{\ell{\rm min}}$                          | > 20      |
| $m_{\ell\ell}$                                       | > 12      |
| $p_{\mathrm{T}}^{\ell\ell}$                          | > 30      |
| $p_{\rm T}^{\rm miss}$                               | > 20      |
| $p_{\mathrm{T,proj}}^{\mathrm{miss}}$                | > 20      |
| $m_{\mathrm{T}}^{ll,p_{\mathrm{T}}^{\mathrm{miss}}}$ | > 50      |
| $\Delta R_{\ell\ell}$                                | < 2.5     |
| Number of b-tagged jets                              | 0         |

- $\Delta R(II)$  binning: [0,1.0,1.5,2.5]
- *m*<sub>*ℓℓ*</sub> binning: 12,60,90,120,inf] GeV
- $M_{\rm T}(p_{\rm T}^{min}, E_{\rm T}^{\rm miss})$  binning: ([0,50,90,130,160,inf] GeV, [0,50,90,130,170,inf] GeV, and [0,50,90,130,180,inf] GeV for 2016, 2017, and 2018 respectively