

Long-lived particles searches at LHCb

Andrii Usachov Nikhef, Amsterdam

on behalf of the LHCb collaboration

July 27, 2021

LHCb detector

• Single-arm spectrometer for beauty and charm physics studies in forward region

- Precise vertex reconstruction with VELO
- Powerful charged hadrons ID by RICH detectors

LHCb detector

IJMPA 30, 1530022 JINST 3, S08005

- Coverage complementary to ATLAS and CMS in $p_{\rm T}$ and η
- Flexible software trigger allowing **soft selections**

LLP searches at LHCb

• So far only within VELO

o Displacement up to 20 cm

JINST 13 (2018) 06, P06008

*decays of B-mesons with $\tau = 1.5 \ ps$ correspond to displacement of O(mm)

- $\circ~$ Thin VELO envelope (RF foil) background dominated by
 - heavy flavour decays at < 5 mm
 - material interactions at > 5 mm
- Precise material veto thanks to imaging with reconstructed vertices
- <u>Can be extended to downstream region</u>
 - Displacement up to 200 cm
 - Much worse momentum resolution

Recent LLP searches at LHCb

- LLP $\rightarrow \mu$ + jets
- LLPs decaying to $e^{\pm}\mu^{\pm}\nu$
- HNL in $W^{\pm} \rightarrow \mu^{+} \mu^{\pm} jet$
- LLP \rightarrow jet jet

- LHCb-PAPER-2021-028
 new

 EPJC 77 (2017) 224
 EPJ.C 81 (2021) 261
 new
- <u>EPJC 81 (2021) 248</u> *new* <u>EPJC 77 (2017) 812</u>

Not in this talk:

Dark photon

<u>PRL 120 (2018) 061801,</u> <u>PRL 124 (2020) 041801</u>

Low-mass dimuon resonances <u>JHEP 10 (2020) 156</u>

see talk by T. Mombacher for Dark matter searches at LHCb

Search for LLPs decaying semileptonically LHCb-PAPER-2021-028

- LLPs may appear from MSSM Lagrangian with R-parity violation
- LHCb is capable to study LLPs down to relatively low masses
- Consider both resonant and non-resonant production processes

- LLP lifetime range: 5-200 ps
- Update of Run1 analysis EPJC 77 (2017) 4, 224
 - Later recasted by Antush et. al, PLB 774 (2017) 114

New !

Search for LLPs decaying semileptonically

- Data set: Run 2
 - Decay signature: muon + 2 jets
- Selection:
 - o high-pt muon
 - \circ muon inside displaced vertex with at least 2 other tracks
 - o veto vertices in the VELO material
 - MVA kinematical selection separate for each model
 - background: from fraction of data
- Fit to invariant mass

LHCb-PAPER-2021-028 New !

Search for LLPs decaying semileptonically

New !

- Results: no signal(s) observed
- 95% CL upper limits on cross-section x BR
 - \circ As function of LLP mass and lifetime, and h^0 mass for resonant production

LLPs decaying to $e^{\pm}\mu^{\mp}\nu$

• Production mechanisms considered:

- Analysis with full Run 2 data
- LLP masses down to 7 GeV
- Correcting mass wrt flight direction: a proof of concept analysis
- Simultaneous fit to corrected mass and lifetime

EPJC 81 (2021) 248

HNL in $W^{\pm} \rightarrow \mu^{+} \mu^{\pm} jet$

• Heavy neutral leptons can be found in W decays

*HNL is expected to have significant lifetime at low masses only

• Upper limits for both same and opposite sign muons using Run 1 data set

HNL in $W^{\pm} \rightarrow \mu^{+}\mu^{\pm}jet$

- Lifetime corrections at low masses
- Not yet competitive with ATLAS, CMS and DELPHI searches
 JHEP 10 265 JHEP 01 122 Z. Phys. C74 57

Searches for LLPs decaying to jets

Signature: single displaced vertex with two (b-) jets Model: Hidden Valley dark pions through Higgs portal Data set: Run 1

- Analysis in bins of R_{xy} radial distance to the beam axis
- Invariant mass range explored: 25-50 GeV
- No excess found, upper limit for lifetimes range 2-500 ps
- Complementary limits to ATLAS and CMS

Can be pushed to lower masses in Run 3 using jet substructure
 LHCB-CONF-2018-006

EPJC 77 (2017) 812

LLP decays to light hadrons

- Access to low masses O(GeV)
- Use charged hadron ID from RICH
- Complicated mixture of heavy flavor background
- Several searches suggested:
 - Model-independent search for $H \to SS, S \to K^+K^-$

LHCb projections: JHEP 01 (2020) 115

Dark hadrons via decays to *D*-mesons / displaced vertices
 LHCb projections: PRD 97 (2018) 9, 095033

Towards Run 3

- x5 luminosity compared to Run 2
- fully-software trigger, 30 MHz event reconstruction
- GPU-based first trigger stage (HLT1) Comput.Softw.Big Sci. 4 (2020) 1, 7
- \rightarrow convenient to trigger exotic signatures

STEALTH white paper

arXiv.2105.12668

Unleashing the full power of LHCb to probe Stealth New Physics

Editors: M. Borsato¹, X. Cid Vidal², Y. Tsai³⁴, C. Vázquez Sierra⁵, J. Zurita⁶

Authors: G. Alonso-Álvarez⁷, A. Brea Rodríguez², D. Buarque Franzosi^{9,10},
G. Cacciapaglia^{11,12}, A. Casais Vidal², M. Du¹³, G. Elor¹⁴, M. Escudero¹⁵, G. Ferretti⁹,
T. Flacke¹⁶, P. Foldenauer¹⁷, J. Hajer^{18,19}, L. Henry⁵, P. Ilten²⁰, J. Kamenik^{21,22},
B. Kishor Jashal⁶, S. Knapen⁵, F. L. Redi²³, M. Low²⁴, Z. Liu^{13,25,26},
A. Oyanguren Campos⁶, E. Polycarpo²⁷, M. Ramos^{28,29}, M. Ramos Pernas³⁰, E. Salvioni⁵,
M. S. Rangel²⁷, R. Schäfer⁸, L. Sestini³¹, Y. Soreq ³², V. Q. Tran¹³, I. Timiryasov²³,
M. van Veghel³³, S. Westhoff⁸, M. Williams³⁴, J. Zupan²⁰

Abstract

In this paper we describe the past, present and future potential of LHCb to find Stealth physics. This refers to Beyond the Standard Model signatures with excellent theory motivation and not falling in the category of "flavor physics". Examples of these signatures include Long-Lived particles, light resonances or hadronic final states where particle identification can play an important role. We will describe why LHCb is very well equipped to discover this kind of physics at the Large Hadron Collider, and provide good examples of well motivated theoretical models that can be probed with great detail at the experiment.

Contents

L	Intro	duction	1
2	Experimental perspective 2		
	2.1	The LHCb detector: Stealth considerations	2
	1	2.1.1 LHCb past, present and future detector status	3
	1	2.1.2 Trigger	6
	1	2.1.3 Offline reconstruction, with a focus on jets	8
	1	2.1.4 Particle identification	10
	2.2 1	Final state considerations	11
	1	2.2.1 Beauty hadron decays to invisible	11
	1	2.2.2 Displaced hadronic decays	12
	1	2.2.3 Pairs of muons	13
	-	2.2.4 Pairs of electrons	15
	-	2.2.5 Pairs of taus	15
	-	2.2.6 Pairs of photons	16
	-	2.2.7 Prompt jets (includes b/c and light)	17
		2.2.8 More convoluted/blue sky ideas	19
3	Rev	view of Stealth results at LHCb	20
	3.1	Jets from Hidden Valleys and MSSM	20
	3.2	Light Dark Sectors	22
	-		
4	The	eoretical perspective	23
	4.1	Neutral Naturalness	25
		4.1.1 Z Portal to a Confining Hidden Sector	25
	4.9	4.1.2 Comming hidden valleys and the 1 win higgs model	27
	4.2	Composite Higgs	29
		4.2.1 Novel D-decay signatures of light scalars at high energy facilities .	29
	4.3	4.2.2 ALL'S from composite mggs models	32
	4.0	4.2.1 Drobing dark sectors with long lived particles	25
		4.3.2 LHC probes of co-scattering dark matter	38
	4.4	Dark Matter and Barvogenesis	40
		4.4.1 Mesogenesis: Baryogenesis and Dark Matter from Mesons	40
		4.4.2 Collider Implications of Barvogenesis and DM from B Mesons	41
	4.5	Neutrino Masses	$\overline{44}$
		4.5.1 Heavy neutral leptons from Drell-Yan production	44
		4.5.2 Heavy neutral leptons from Meson decays	46
	4.6	Dark Photons	48
		4.6.1 Dark photons in multi-lepton searches	48
		4.6.2 Minimal Dark photons	50
		4.6.3 Long Lived Dark Photons	51
	4.7	Light new scalars	54
		471 Exetic Higgs Decay	54
		4.7.2 Single (pseudo-)scalar production	56
	4.8	4.1.2 Single (pseudo-)scalar production	58
	4.0	4.8.1 Probing the flavor conserving ALD couplings	50
		48.2 Probing the flavor violating ALP couplings	59
	4.9	True Muonium	61
	4.10	Soft Bombs / SUEPs / Dark Showers	62
	4.11	Quirks	64
		•	
5	Con	Conclusions 66	

Summary

LHCb provides unique capabilities for

- detecting low-mass particles and soft signatures
- complementing searches at ATLAS and CMS

Available searches for

- semi-leptonic and hadronic LLP decays
- heavy neutral leptons
- di-muon resonances

Inspiring prospects for Run 3 with

- x5 larger luminosity
- fully-software trigger

Stay tuned

Light boson from $b \rightarrow s$ decays

• Light boson can contribute to $b \rightarrow s\mu\mu$ penguin decays

u u u $W^ K^+$ \bar{b} \bar{b} H \bar{b} H $\mu^ \mu^+$

- LHCb has world's largest sample of $b \rightarrow s\mu\mu$ decays
- Study of di-muon spectrum

PRL 115 (2015)161802

PRD 95 (2017) 071101

Light boson from $b \rightarrow s$ decays

- Search for a narrow di-muon peak
- Displacement of muon pair is considered
- Upper limits on mixing with SM Higgs

• World's best upper limits below $2m_{\tau}$

PRL 115 (2015)161802 PRD 95 (2017) 071101

Dark photons in di-muon spectrum

- Light dark photon can appear in a mixing with off-shell photon
 - \circ large fraction in forward region, low p_T
- Normalized to off-shell photons
 - No need for efficiencies (for prompt search)

- Bump hunt analysis
- Regions of SM resonances removed
- Search for both prompt and displaced signatures using Run 2 data

Dark photons in di-muon spectrum PRL 124 (2020) 041801

- World's best upper limits for inv. mass range of ~200-700 MeV (prompt)
- First displaced search not from beam-dump experiments
 - explored invariant mass range: 214-350 MeV
- Can be extended with di-electron search at very low masses in $D^* \rightarrow Dee$ PRD92 (2015) 115017

Non-minimal search

- No assumption on mixing with off-shell photon
- Production categories

- No isolation requirements
- Non-zero width considered

Non-zero width considered

JHEP 10 (2020) 156

Inclusive di-muon search

• Results in kinematics bins for each category

*numbers available at supplementary material for interpretations

• 2 HDM scenario

