Constraining electroweak and strongly charged long-lived particles with

Nishita Desai TIFR, Mumbai

Based on 2104.04542 (with Florian Domingo, Jong Soo Kim, Roberto Ruiz de Austri Bazan, Krzysztof Rolbiecki, Mangesh Sonawane, Zeren Simon Wang)

LLP Signature vocabulary

- Leptons eµ, µµ
- Vertices with r
 - Jets (emer

Heavy charged track

Disappearing track

SUEP

One-off

Displaced

"Prompt"

with muons, lepton veto (n_trk \ge 5), dimuon (emerging, lepton, trackless)

Monte Carlo

Lagrangian + parameters

Include the effects you want to observe

- benchmarks
- definitions of objects (vertex, jet, etc.)
- detector acceptances
- efficiencies
- cut flow tables

needed to accomplish this

Compare with published shapes/limits

Kinds of LLP searches in CheckMATE

- Displaced vertex + MET (ATLAS, <u>1710.04901</u>)
- Displaced vertex + µ (ATLAS, <u>2003.11956</u>)
- Heavy Charged track (ATLAS, <u>1902.01636</u>)
- Displaced Leptons (CMS, <u>1409.4789</u>, CMS-PAS-EXO-16-022)
- Disappearing track (ATLAS, <u>1712.02118</u>)

Search 1: Displaced Vertex

Nishita Desai • TIFR

Efficiencies published based on generator-level info, in a model-independent* parametrisation

• Reinterpreted limits match published very well for almost entire lifetime range.

identically.

Nishita Desai • TIFR

Displaced Vertex - 1

• CheckMATE provides ratio of CheckMATE-calculated BSM signal to published 95% upper limit. Calculating CLs based on expected background events works

Nishita Desai • TIFR

Displaced Vertex - 1 : compressed spectra

We wait for the 139/fb update

Nishita Desai • TIFR

Search 2: Displaced Vertex (+ μ)

Displaced Vertex - 2

Nishita Desai • TIFR

	$\tau = 0.01 \text{ ns}$		$\tau = 0.1 \text{ ns}$		$\tau = 1 \text{ ns}$	
Selection	ATLAS	$\mid CM$	ATLAS	CM	ATLAS	$\mid CM$
All	64.2	64.2	64.2	64.2	64.2	64.2
E_T^{miss} trigger	63.0	63.2	63.0	63.3	62.7	63.2
$E_T^{\mathrm{miss}} > 180 \mathrm{~GeV}$	60.9	61.2	61.0	61.3	60.6	61.0
$\geq 1\mu; p_T > 25 \text{ GeV}, \eta < 2.5$	57.8	60.8	58.7	61.0	52.5	60.6
$2 < d_0(\mu) < 300 \text{ mm}$	11.3	12.8	49.1	52.5	49.5	59.2
$ z_0(\mu) < 500 \text{ mm}$	11.3	12.8	49.1	52.5	49.3	58.1
Fake/HF/cosmic veto	9.1	9.9	40.0	42.4	39.4	48.1
At least one DV	8.5	4.4	37.6	29.8	32.6	39.6
DV fiducial volume	8.4	3.7	37.1	29.1	31.2	32.7
Material veto	5.3	2.2	31.0	16.9	22.2	19.0
$n_{ m tracks}^{ m DV} \ge 3$	3.8	1.8	26.0	15.5	13.7	17.3
$m_{\rm DV} > 20~{\rm GeV}$	3.4	1.2	22.7	11.9	10.3	14.0

Lifetime behaviour confirmed for three lifetimes

Search 3: Heavy Charged track

Benchmark Model

ATLAS, <u>1902.01636</u>

We implement the EW search regions

Efficiencies available based on true boost of particles

Search 4: Displaced Leptons

Search 5: Disappearing track

	CM $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$	CM $\tilde{\chi}_1^+ \tilde{\chi}_1^0$	CM $\tilde{\chi}_1^- \tilde{\chi}_1^0$	CM all channels	ATLAS
Trigger	445.1	624.0	274,4	1343.5	1276
Lepton Veto	423.4	608.5	267.3	1308.2	1181
MET and jet requirements	164.2	229.6	101.0	494.8	579
EW SR	5.2	4.4	1.6	11.2	13.5

	CM	ATLAS
Trigger	289	285
Lepton Veto	277	278
MET and jet requirements	216	202
strong SR	11	11

Models to test

EW model

New scalar

Charged under SU(2) only

Produced via Drell-Yan, decays via Yukawa-like coupling to lepton + invisible

Based on lifetime, see in track searches and displaced leptons

Nishita Desai • TIFR

Strong model

New scalar

Charged under SU(3) only

Produced via s-channel gluon, decays via Yukawa-like coupling to lepton + quark (SUSY R-parity violating or leptoquark)

See in displaced vertex searches

EW model limits

- disappearing track search.
- Intermediate mass range currently not visible in disappearing track because

Nishita Desai • TIFR

• Upper limits on masses between 150-480 GeV based on lifetime (or analogously on Yukawa coupling). There is a gap between lifetimes ~ 1 cm – 1 m which should in principle be seen by the

(1) Large mono-jet trigger cut required kills production cross section (we need other triggers too) (2) We don't know how if lepton veto works. Likely it should not affect because dO is too large.

RPV model limits

How to use CheckMATE for your own model

Dercks, ND et al. Comp. Phys. Comm. (2017)

Generate signal events by linking to Pythia/Madgraph or provide LHE / hepMC file

Simulate kinematic cuts

Compare to published upper limits

