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๏ Introduction and motivation 

๏ LUXE physics and experimental setup 

๏ New Physics @ Optical Dump with LUXE ⟶LUXE-NPOD 

๏ For a more complete description of the non-BSM parts of LUXE, see talks by: 
๏ Louis Helary: Studies of high-field QED with the LUXE experiment at the European XFEL 
๏ Sasha Borysov: Detector Challenges of the strong-field QED experiment LUXE at the European XFEL
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Outline
arXiv:2107.13554 

*28 Jul 2021*

Laser pulse 
“Optical Dump”

Free GeV 
photons

Beam 
electron

https://indico.desy.de/event/28202/contributions/105599/
https://indico.desy.de/event/28202/contributions/105760/
https://arxiv.org/abs/2107.13554
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What happens in strong fields?

numeric const.a =

non-perturbative 
with ϵ ⟶ ϵS

The probability to materialise one 
virtual  pair from the vacuume+e−

ϵS =
m2

e c3

eℏ
≃ 1.32 ⋅ 1018 V

m

The Schwinger critical field (1951)

P ∼ exp (−a
ϵS

ϵ )

ϵ
V

Electric field ϵ

⟶ ∞
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History & Impact

๏ never been reached in a clean environment* 
๏ test basic predictions in a novel QM regime 
๏ relevant to many areas in physics 
๏ potential for seeing effects of new physics!

{

1930s
1951

1990s

2020s

First discussions by Sauter, Heisenberg & Euler
First calculations by Schwinger: ϵS

E144 at SLAC first to approach ϵS

LUXE: reach  and go beyond!ϵS

The Schwinger field may be approached/reached only in 
a highly-boosted system, e.g. the one produced at LUXE

Neutron stars Hawking radiation

E-breakdown Colliders

Inflation

}
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LUXE physics in a nutshell
๏ Nonlinear Compton scattering followed by 

Nonlinear Breit-Wheeler pair production 
๏ Fermions inside the pulse are Volkov states 
๏ Characterised by two dimensionless parameters: 

Laser intensity  and Quantum par.  

๏ Non-perturbativity: 

ξ ∝ ϵ
ϵS

χ ∝ Ee

me
ξ

ξ ≫ 1
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High energy 
electrons 

(Eu.XFEL)

“sees” a larger 
field by  

in its rest frame
Eγ /me

High-power 
laser: large 

E-field

coupling between
charge and
radiation field, ↵

electron

coupling between
charge and
background field, a0 = ξ

https://www.worldscientific.com/doi/pdf/10.1142/S0217751X18300119
https://arxiv.org/abs/1807.10670
https://arxiv.org/abs/2107.02161
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LUXE @ the Eu.XFEL

DESY

The European XFEL 
(running since 2017)

LUXE

Electrons
Ee up to 16.5 GeV, with Ne = 1.5×109 e-/bunch and a bunch charge up to 1.0 nC,

1/2700 bunches/train, ~1+9 Hz (collisions+background), spot rxy=5 µm, lz=24 µm

Laser
Ti-Sapphire, 800 nm, 40/350 TW,  up to ~10 J, ~10 Hz repetition, 60% losses 

 
~30-200 fs pulse length, down to 3×3 µm2 FWHM spot with up to I~1021 W/cm2 

Install and start 
operation in 2024!

Laser

IPelectrons

ϵLaser → ϵLaser × Ee ∼ 10 GeV
me ∼ 0.5 MeV ∼ ϵLaser × 104

Accepted by European Physics Journal ST

https://arxiv.org/abs/2102.02032
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New Physics at LUXE
๏ Focus on axion-like particles (ALP) search 
๏ in many motivated extensions of the SM 
๏ addresses the strong CP & the hierarchy 

problems, valid dark matter candidate,… 
๏ everything will apply also to scalars with

 

๏ Focusing on the Primakoff production 
with a displaced decay to 2 hard photons 

๏ See backup for ALP production discussion

a → ϕ, F̃μν → Fμν, iγ5 → 1

ℒa =
a

4Λa
FμνF̃μν + igaeaēγ5e

LUXE 
NPOD

ignore today

�⇤

� a

N N

γ
γ

EPJC Vol 79, 74 (2019)

https://link.springer.com/article/10.1140/epjc/s10052-019-6587-9
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New Physics @ Optical Dump
Laser pulse 

“Optical Dump”

Free GeV 
photons

Beam 
electron

“Optical Dump”

Pulse waist size
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9

ω−1
L ≪ τγ ≪ tL ≪ τee

Na ≈ ℒeff ∫ dEγ
dNγ

dEγ
σa(Eγ, Z)(e− LD

La − e− LV + LD
La ) 𝒜

a, ϕ
e−

γL

γ γ
γ

ALPs 
Production

M
uo

n 
de

t.

EMCalMagnetPhotons 
Dump

e-laser int.  
chamber LD = 1 m LV = 2.5 m

e−

γL

γ
3γ

Background 
Production

γ

n

e, μ, π, K, p, . . .

K0
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Photon spectra for ALPs production
phase-1: all

phase-1: primary

phase-1: secondary

phase-0: all

phase-0: primary

phase-0: secondary

Bremsstrahlung

1 2 3 4 5 6 7 8 9 10 11 1210-4

10-3

10-2

10-1

1

Eγ [GeV]

dN
γ

dE
γ
[p
er
e-
/G
eV

]

๏ Showing spectra per primary electron 
๏ “primary” from the IP and 
๏ “secondary” from the shower in the dump 

๏ “Many” photons per electron (phase-1): 
~3.5 for ( ) 
~1.7 for ( ) 

๏ Not shown: spectra for the electrons-on-
dump case. One expects a factor of ~2 more 
photons - more signal!, what about bkg?

Eγ > 0 GeV
Eγ > 1 GeV

phase0: 
-  
-  
-  
-

τpulse = 25 fs
w0 = 6.5 μm
ξ = 2.4
Nγ/e < 1

phase1: 
-  
-  
-  
-  or 1.7 if 

τpulse = 120 fs
w0 = 10 μm
ξ = 3.4
Nγ/e = 3.5 Eγ > 1 GeV
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Background estimation
๏ Remaining background is mostly neutrons and photons 

๏ we get 0 photons and 10 neutrons per BX for 2 BXs simulated 

๏ This is inaccurate: need many more BXs for a proper estimate 
๏ however, the simulation is very intensive computationally 

๏ Instead, we see that the photon production is correlated with the 
neutrons production (in hadronic processes) 

๏ So, Nγ can be extrapolated from the photons-to-neutrons ratio of 
shorter  dumps where we have enough photons, using: 

 

๏ For 1 year of (~107 s) with a reasonably good detector we can have
 background events hence we may assume bkg-free search

LD
Nγ(LD = 1 m) ∼ Nn(LD = 1 m) × Rγ/n(LD < 1 m)

≲ 1
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LUXE-NPOD
Fit & 95% CI

Electrons on dump

Fit & 95% CI

Photons production is 
correlated with neutrons

each point has 2 BXs simulated
Rγ/n(LD < 1 m)
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Belle-II

Belle-II

FASER2

FASER
GlueX, fb-1

GlueX, pb-1

NA62-dump

PrimEx

NA64

LEP

Belle-II

Beam Dumps

PrimEx

LUXE-NPOD
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Λ
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G
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-
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Outlook
๏ LUXE is a new exciting experiment with a novel 

baseline plan to test strong-field QED predictions in a 
region never explored before in clean environments 

๏ Plan is very streamlined: take data in early ~2025  

๏ LUXE can also search for new physics 
๏ exploiting the optical dump concept 
๏ see backup for new physics production at the IP 

๏ The proposal is an “easy” addition to the experiment and 
it can be made effectively background free 
๏ see paper for discussion about possible technologies 

๏ Our reach is comparable to projections from NA62 
(need a dedicated run) and FASER2 (end of HL-LHC) 
๏  and 40 ≲ ma,ϕ ≲ 350 MeV Λ−1

a,ϕ > 2 × 10−6 GeV−1

Setting the number of observed signal-like events to , 
which is the 95 % CL equivalent for background free search

Na = 3
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Tomsk, Russia

Shenzhen, China
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Backup
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๏ Outside observer: 
the BH has radiated 
a particle so the 
energy must come 
from it 

๏ Looking at the 
system: the BH 
energy has 
decreased so its 
mass must decrease

The Hawking equivalent
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Why strong field physics?

๏ Reaching  is equivalent e.g. to the measurement of the anomalous magnetic 
moment or the coupling constant and deviations could be a hint for new physics 

๏ Non-perturbative QFT is still being actively developed 
๏ Can provide insight into the vacuum state / Higgs mechanism  
๏ Schwinger effect proposed as mechanism for reheating in the early universe 
๏ New physics opportunities with strong field (ALPs, mCPs,…)

ϵS
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The Schwinger mechanism simplified
๏ Force of external static electric field is:                        
๏ Energy to separate the virtual pair in a distance d:       
๏ Energy required to materialise as a real pair:               
๏ Condition to materialise as a real pair in distance d:    
๏ Compton wavelength (typical scale):                           
๏ Probability for d: 

F = eϵ
E = F ⋅ d = eϵ ⋅ d
E = 2mec2

eϵd = 2mec2

λC = ℏ/(mec)

P ∝ exp (−
d
λC ) = exp (−2

m2
e c3

ℏeϵ ) = exp (−2
ϵS

ϵ )
ϵ

non-perturbative in e

ϵS =
m2

e c3

ℏe
≃ 1.3 ⋅ 1018 V

m
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The Furry Picture vacuum

๏ The external field “closes” this energy gap 
๏ Electrons are lifted from the sea to leave the vacuum charged 
๏ The VEV of the EM current must no longer vanish 
๏ Separation into creation and destruction operators is problematic 
๏ This point is the limit of the validity of the Furry picture

The 2nd quantisation of the 
Dirac field relies on a gap 
between the positive and 
negative energy solutions
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The Furry Picture
๏ If the external field is sufficiently strong: quantum interactions with it leave it essentially unchanged and it can be considered to be a 

classical background field 
๏ Separate the gauge field to external and quantum parts: 

 and shift  to the Dirac component:  

๏ The FP Lagrangian satisfies the Euler-Lagrange equation. 
๏ New equation of motion for the non-perturbative (bound) Dirac field (wrt ) and new solutions :  

๏ Exact solutions exist for a certain classes of external fields (plane waves, Coloumb fields and combinations) [Volkov Z Physik 94 250 
(1935), Bagrov & Gitman 1990]: 

 with 

ℒInt = ψ̄(i∂ − m)ψ− 1
4 F2

μν − eψ̄(Aext + A)ψ Aext ℒFP = ψ̄FP(i∂ − eAext−m)ψFP− 1
4 F2

μν − eψ̄FPAψFP

Aext ψFP (i∂ − eAext−m)ψFP = 0

ψFP = Epe−ipxup Ep = Exp [− 1
2k ⋅ p (eAextk + i2e(Aext ⋅ p) − ie2A2

ext)]

IJMP A, Vol. 33,
No. 13 (2018)
1830011
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Boiling point of QED
๏ Weak fields: many accurate predictions of observables through ordinary 

perturbative expansion in the EM coupling (𝛼EM) 

๏ Strong fields: observables become inaccessible through ordinary perturbative 
expansion and there’s no experimental verification 

๏ For example: the spontaneous e+e- pair production (SPP) rate per unit volume in 
strong static E-field is:

|E | But how to produce static E-field 
of the order of ~1.3×1018 V/m ???

ΓSPP

V
=

m4
e

(2π)3 ( |E |
Ec )

2 ∞

∑
n=1

1
n2

e−nπ Ec
|E | ∼ e− πm2e

e |E |

non-perturbative in 𝛼

Phys. Rev. D 99, 036008 (2019)
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Lasers strong field “how-to”
๏ Laser-assisted one photon pair production, OPPP (SPP ⟶OPPP) 
๏ the laser’s E-field frequency is , with momentum  
๏ the laser’s E-field strength is , with  
๏ The  pair picks up momentum from the laser photons 

๏ OPPP rate is a function of the laser intensity  and the photon recoil :

ω k = (ω, k)
|ϵ | I ∼ |ϵ |2

e+e−

ξ χ

Laser intensity : ξ =
e |ϵ |
ωme

=
me

ω
|ϵ |
ϵS

Photon recoil : χγ =
k ⋅ ki

m2
e

ξ = (1 + cos θ)
ωi

me

|ϵ |
ϵS

{Dimensionless and 
Lorentz-invariant

Initial photon : ki = (ωi, ki) ΓOPPP =
αm2

e

4ωi
F(ξ, χγ)
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Understanding ξ
e−

The electron’s maximum velocity is: vmax = a ⋅ Δt =
eE
me

⋅
1
ω

Electron “at rest”

The electron will oscillate with frequency  and radiate in turn: ω eE = mea

Normalise to c:    (dimensionless & Lorentz-invariant)ξ ≡
vmax

c
=

eE
ωmec

 reaches unity for e.g. a  nm laser at an intensity of  W/cm2ξ λ = 800 I ∼ 1018

Infinite E-field plane 
wave with frequency ω
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Understanding χ
Recoil parameter: χ =

k ⋅ ki

m2
e

ξ = (1 + cos θ)
ωi

me

|E |
Ec

θ
cos(π − θ) = − cos θ
π-θ

ω

e/γ

Scattering geometry: k ⋅ ki = ωωi − |k | |ki |cos(π − θ) = ωωi (1 + cos θ)

χ =
k ⋅ ki

m2
e

ξ =
ωωi (1 + cos θ)

m2
e

eϵ
ωmec

= (1 + cos θ)
ωi

me

ϵ
ϵS

1
ϵS

=
e

m2
e

ℏ = c = 1
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OPPP rate: ΓOPPP ∝ F(ξ, χγ)

As the laser intensity  increases 
๏ the threshold number of absorbed photons increases 
๏ more terms in the summation drop out of the probability

ξ

Jn are Bessel functions
Sum on number of 
absorbed laser γ’s

threshold number 
of absorbed γ’s

Assumption1: the laser E-field is a circularly polarised infinite plane wave 
Assumption2: we can produce a mono-energetic photon beam with ~O(10 GeV)
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Compton edges
๏ With increasing laser intensity : 
๏ higher order (n) contributions 

become more prominent 
๏ edge shifts to lower energies due 

to electron’s higher effective mass 

๏ Cannot go much beyond  to 
produce high energy photons

ξ

ξ ∼ 1

The rate is a series of Compton edges 
for n=1,2,3,… absorbed photons and 
the edges shift down with increasing ξ

ξ=0.01 ξ=0.5
ξ=0.1 ξ=1
ξ=0.2 ξ=2

0 2 4 6 8 10 12
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Photon energy (GeV)
E
m
is
si
on
ra
te

(G
eV

-1
fs

-1
)

16.5 GeV electron, 800 nm laser, 17.2° crossing angle

ξ
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  asymptoticallyΓOPPP

๏ Unlike SPP, the  pair (in its rest frame) experiences an E-field 
enhanced by the relativistic boost factor:  

๏ However, mono-energetic photon beams with energies in the 
 range are not available…

e+e−

|ϵ | → |ϵ | × ωi/me

ωi ∼ 𝒪(10 GeV)

ΓOPPP ⟶
3
16

3
2

αme (1 + cos θ)
|ϵ |
ϵS

exp (−
8
3

1
1 + cos θ

me

ωi

ϵS

|ϵ | )
 pair is boosted and 

the E-field is enhanced
e+e−

ωi ∼ 𝒪(10 GeV)
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High-energy photons?
๏ An  electron beam can be sent onto a high-Z target 
๏ Converted into a collimated high-energy γ-beam (Bremsstrahlung) 
๏ These photons are crossed with the high-intensity laser beam 
๏ Laser-assisted bremsstrahlung photon pair production (BPPP)

∼ 𝒪(10 GeV)

Recall : ΓOPPP =
αm2

e

4ωi
F(ξ, χγ(ωi))

ΓBPPP =
αm2

e

4 ∫
Ee

0

dωi

ωi

dNγ

dωi
Fγ(ξ, χγ(ωi))

⏟Bremsstrahlung “PDF”

� Spectrometer

High energy

electrons

Bremsstrahlung converter

High energy photon

High intensity laser beam

e+/e� Deflection system

e+/e� Spectrometer

Ee

 is the energy of the incident electronsEe
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Asymptotically
๏ For a target of thickness , where  is the radiation length: 

 

๏ Similarly to OPPP, replacing  with , the BPPP rate is: 

X ≪ X0 X0

ωi
dNγ

dωi
≈

4
3

−
4
3 ( ωi

Ee ) + ( ωi

Ee )
2

X
X0

χγ χe

ΓBPPP ⟶
αm2

e

Ee

9
128

3
2

X
X0

χ2
e e− 8

3χe (1 − 1
15ξ2 )
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History: E144 @ SLAC

29

๏ 46.6 GeV electron beam 
๏ 5×109 electrons per bunch 
๏ Bunch rates up to 30 Hz 
๏ Terawatt laser pulses 
๏ Intensity of ~0.5×1018 W/cm2 
๏ Frequency of 0.5 Hz for 

wavelengths 1053 nm, 527 nm 
๏ electrons-laser crossing angle: 17º

OPPP only!

Phys.Rev. D60 (1999) 092004

!

!

!

!

!

!

!

!

!
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Rate ! 105s"1
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History: E144 @ SLAC

30

1/χγ =

1/14 ≤ χγ ≤ 1/6

ξ =

0.2 ≤ ξ ≤ 0.4

Phys.Rev. D60 (1999) 092004

OPPP only!
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History: E144 @ SLAC

31
Phys.Rev. D60 (1999) 092004

๏ Measured non-linear Compton scattering with  photons absorbed and 
pair production (with ) 

๏ Observed the strong rise  but not asymptotic limit (still perturbative) 

๏ Measurement well described by theory 

๏ Large uncertainty on the laser intensity 

๏ Did not achieve the critical field - the peak E-field of the laser: 0.5×1018 V/m

n = 4
n = 5

∼ ξ2n
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Mass shift
๏ Electron motion in a circularly polarised field, , with frequency : 

๏ Force:  
๏ Velocity:  
๏ Momentum:  
๏ Energy:  
๏ Mass shift: 

 
๏ The 4-momentum of the electron inside an EM wave is altered due to continuous absorption and 

emission of photons 
๏ the laser photon 4-momentum is:  
๏ outside the field, the (free) charged particle 4-momentum is:  
๏ inside the field, the effective 4-momentum ( ) and mass are: 

ϵL ωL
F⊥ = eϵL = mea = mev2/R ⟹ R = mev2/eϵL

v = ωLR = ωLmev2/eϵL ⟹ v = eϵL /ωLme = ξ
p⊥ = mev = meξ

E = m2
e + ⃗p 2 = m2

e + p2
⊥ + p2

∥ = m2
e (1 + ξ2) + p2

∥ = m̄2
e + p2

∥

me ⟶ m̄e = me 1 + ξ2

kμ
pμ

qμ

qμ = pμ +
ξ2m2

e

2(k ⋅ p)
kμ ⇒ m̄e = qμqμ = me 1 + ξ2
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Mass shift ⟶ kinematic edge
๏ if  is the number of absorbed laser photons in the nonlinear Compton process, 

the energy-momentum conservation:  

๏ The maximum value for the scattered photon energy, , corresponds to the 
minimum energy, or, “kinematic edge” of the scattered electron. It depends on 
the number of absorbed laser photons: 

, where  

๏ This energy decreases with increasing number of photons absorbed 

๏ The electron is effectively getting more massive with  and recoils less 
๏ the min energy of the scattered electron (kinematic edge) is higher

n
qμ + nkμ = q′ μ + k′ μ

ω′ 

ω′ min =
ω

1 + 2n(k ⋅ p)/m̄2
e

m̄e = me 1 + ξ2

ξ
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Electric field vs Intensity
I = (1 − fLosses) ×

Epulse

Tpulse × Spulse
→

(1 − 60%) × 9 [J]
30 [fs] × (3 × 3 [μm2])

I = 0.4/30 [J/fs/μm2] ∼ 1.33 × 10−2 × 1015 × 108 [J/s/cm2]

I = 1.33 × 1021 [J/s/cm2] = 1.33 × 1021 [W/cm2]

ϵL =
I

cnϵ0
⟶⏟
n=1

∼
1.33 × 1021

(2.99 × 108) × (8.85 × 10−12)
(N ⋅ m/s)/cm2

(m/s) × (N/V2)
∼ 0.71 × 1012 [V/cm]

Boost : ϵL ⟶ ϵ′ L = ϵL × (3.23 × 104) ∼ 2.3 × 1016 [V/cm] = 1.77 × ϵSchwinger

ϵSchwinger ∼ 1.3 × 1016 [V/cm]ϵ0 = 8.85 × 10−12[N/V2]

c = 2.99 × 108[m/s]

[I] = [W] = [N ⋅ m/s]
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Dipole magnet 1
Laser pulse

Compton γ’s

e−e+

γ dump
e-laser setup 
(Not in scale)

Electron beam dump

Electron beam 
from the XFEL

IP

θ = 17
0

γ-converter

Dipole magnet 2 

Shielding

Cherenkov counter 
behind a Scint. screen

Scint. screen

Backscattering calorimeter

e−e+

Shielding

x

y
z

γ
γ

ALPs

γALPs detector (TBD)

γ-profiler

e−
C

Pixel tracker

Calorimeter

Today’s talk focusLaser

IP ALPselectrons
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๏ Phase-I: the JETi40 40 TW laser loaned 
to LUXE by Helmholtz Institute Jena 

๏ Phase-II: looking up towards a 350 TW 
laser with as small as 3×3 µm2 spot size 

๏ Challenge: exact knowledge of the 
intensity at the IP 

๏ with the laser being ~10’s of meters 
away from it 

๏ and with a remote diagnostics system

Laser

Laser room

IP
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Laser diagnostics
๏ Measure laser parameters to infer the intensity, I 

๏ can be indirect and direct, relative and absolute 

๏ Small fluctuations in I lead to large rate fluctuations 
๏ air movement, vibrations, temp-drift, 

pump discharge variations, etc. 

๏ The laser beam will be attenuated and imaged on the return 
path to the diagnostics 10s of meters away from the IP

I =
E

A × τ

pulse energy

pulse spot size × duration

10’s of meters in vacuum

Diagnostics 
๏ relative intensity 
๏ pulse duration 
๏ beam size
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Synchronisation & Trigger

Synchronisation of the XFEL: 
๏ Optical clock (master laser oscillator, MLO) provides stable pulsed optical 

reference (Phase-locked to radio frequency (RF) oscillator (MO)) 
๏ Optical reference distributed via length-stabilised optical fibre links for 

laser locking and RF re-sync 
LUXE’s laser oscillator: 
๏ connected to the optical sync system, which will in turn trigger the detectors

2.1 fs rms

Correlation of two independent 
bunch arrival time diagnostics 

(BAMs) at tunnel location 1932 m

world’s largest femtosecond-precision 
synchronisation system 
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LUXE at Eu.XFEL
arXiv:2102.02032, will achieve ϵ ∼ ϵS

ΓγCΓe+e−

0

https://arxiv.org/abs/2102.02032
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E144 at SLAC (99)
Phys.Rev. D, Vol 60, 092004, achieved ϵ ≲ ϵS /4

๏Observed the strong rise as 
 ⟶ still perturbative 

๏Well described by theory 
๏Laser’s peak E-field was 

~0.5×1018 V/m

ξ2n

ξ =

data hist
bkg hist

sim.1 fit
sim.2 fit

 (converted γ’s)ΓγC

Γe+e−

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.60.092004
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Non-perturbativity

The dependency of probability for the Breit-Wheeler 
process on the intensity parameter ξ for a probe photon 
colliding at 17.2 degrees with otherwise standard laser pulse 
parameters. The blue dashed lines indicate multi-photon 
scaling and the plot markers are the analytical QED plane-
wave results for a photon energy of 16.5GeV

The parameter region LUXE will probe, compared to the 
asymptotic scaling of the Breit-Wheeler process at large and 
small ξ and χ parameters
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LUXE Planning

๏ CDR released in Feb 2021 & passed an international review. Now working toward TDR for 2022 
๏ Experiment must be installed by 2024 during the long shutdown of the Eu.XFEL 
๏ Phase-0: data taking in 2024 with the 40 TW laser in e-laser mode and move to γ-laser in 2025 
๏ Phase-1: upgrade laser to 350 TW in 2026 and run until the Eu.XFEL needs the tunnel (~2029)
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Time scales @ LUXE-NPOD

๏ The relevant time scale of LUXE’s  800 nm laser itself is  
๏ The laser pulse duration is  
๏ The (Compton scattering) photon production timescale is  
๏ The (Breit-Wheeler) pair production timescale is  

๏ Therefore: 

ω−1
L ∼ 0.4 fs

tL ∼ 𝒪(10 − 200) fs
τγ ∼ 𝒪(10) fs

τee ∼ 𝒪(104 − 106) fs

ω−1
L ≪ τγ ≪ tL ≪ τee
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Why not electrons-on dump?

a, ϕe− γ
γ

Magnet

Electron beam dump

EMCal

M
uo

n 
ch

am
be

r

XFEL electrons on dump 
(not to scale)

LS LD z
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Particles from e/γ-beam on 1m W dump

LUXE 
γ-on-dump

XFEL 
e-on-dump

Each simulation in the following is equivalent to about 2 BXs (i.e. 3e9 primary e’s) 
Showing the number of particles - only those which arrive at the detector surface

neutrons

photons

neutrons

photons
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30 35 40 45 50
Dump length [cm]

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01n
N
γ

N

0.0002±= 0.0013/nγR=1.88, 
DoF
2χ

0.0002±= 0.0062/nγR=3.41, 
DoF
2χ

 NPODLUXE

Fit & 95% CI

Electrons on dump

Fit & 95% CI
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Probability to get 2 real photons
๏  

๏  since the fit gives  and 

since , with  

(or in the e-on-dump case:  for  
 and ) 

๏   (or in the e-on-dump case: )

Pmγ
=

λmγ
γ e−λγ

mγ!

λγ = 0.013 ± 0.004 Rγ/n = 0.0013 ± 0.0002

Nn ≃ 10 λγ = NnRγ/n 1 ± 1
Nn

+
Δ2Rγ/n

Rγ/n

λγ ≃ 0.26 ± 0.04
Rγ/n ≃ 0.0062 ± 0.0002 Nn ≃ 42.6

P2γ =
λ2

γ e−λγ

2!
≃ 8.34 × 10−5 2.7 × 10−2
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Probability to get 2 fake photons
๏  

๏   (or in the e-on-dump case: ) 

๏
 

๏
 

๏
 

๏    (or in the e-on-dump case:  )

Pn→γ = fn→γ

λn = λn(1 m) = 10 λn ≃ 42.6

P2n→2γ =
∞

∑
mn=2

λmnn e−λn

mn!
C(2,mn, Pn→γ)

P2n→2γ =
∞

∑
mn=2 ( λmnn e−λn

mn! ) ( mn!
2!(mn − 2)!

P2
n→γ × (1 − Pn→γ)mn−2) =

∞

∑
mn=2

λmnn e−λn × P2
n→γ × (1 − Pn→γ)mn−2

2!(mn − 2)!

P2n→2γ =
P2

n→γe−λnλ2
n

2 (1 + λn(1 − Pn→γ) +
λ2

n(1 − Pn→γ)2

2!
+ . . . ) =

P2
n→γe−λnλ2

n

2 (
∞

∑
k=0

(λn(1 − Pn→γ))k

k! ) =
P2

n→γe−λnλ2
n

2

∞

∑
k=0

xk

k!

ex

P2n→2γ =
P2

n→γλ2
ne−λneλn(1−Pn→γ)

2
= P2

n→γe−λnPn→γ
λ2

n

2
= 50f2

n→γe−10fn→γ
42.62

2
f2
n→γe−42.6fn→γ
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Probability to get 1 real + 1 fake photons
๏ For photons: ,   

๏
For neutrons: ,   ,    

 

 

  

 
 

๏ For one neutron and one photon:  

(or in the e-on-dump case: )

λγ = 0.013 ± 0.004 Pmγ
=

λmγ
γ e−λγ

mγ!
⇒ P1γ = λγe−λγ

Pn→γ = fn→γ λn = 10 ± 2.3 P1n→1γ =
∞

∑
mn=1

λmnn e−λn

mn!
C(1,mn, Pn→γ)

P1n→1γ =
∞

∑
mn=1 ( λmnn e−λn

mn! ) ( mn!
1!(mn − 1)!

Pn→γ × (1 − Pn→γ)mn−1) =
∞

∑
mn=1

λmnn e−λn × Pn→γ × (1 − Pn→γ)mn−1

(mn − 1)!

P1n→1γ = Pn→γe−λnλn (1 + λn(1 − Pn→γ) +
λ2

n(1 − Pn→γ)2

2!
+ . . . ) = Pn→γe−λnλn (

∞

∑
k=0

(λn(1 − Pn→γ))k

k! ) = Pn→γe−λnλn

∞

∑
k=0

xk

k!

ex

P1n→1γ = Pn→γλne−λneλn(1−Pn→γ) = Pn→γe−λnPn→γλn

Pn+γ→2γ = P1n→1γ ⋅ P1γ = (λn fn→γe−λn fn→γ) ⋅ (λγe−λγ) ≃ 0.128fn→γe−10fn→γ

1.12fn→γe−42.6fn→γ
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Circle equation wrt the origin at the centre of the circle defined by the track:  

Therefore:   and hence   

The tangent equation is: . The tangent gradient, , is -1 over the gradient of 
the radius line itself, at the point where the tangent is defined at the point , i.e.: 

  

Using the point  again we get the intersection of the tangent:  

 

Hence, the prediction along the tangent at some point  is: 

 and so putting   

we get that 

X2 + Z2 = R2

Zexit = LB Xexit = R2 − L2
B

Z = mT ⋅ X + cT m
(Zexit , Xexit)

mT = − 1/mR = − 1/(ΔZ/ΔX)radius slope = − (Xexit − 0)
(Zexit − 0)

= −
R2 − L2

B

LB
= −

R2

L2
B

− 1

(Zexit , Xexit) cT = Z − mT ⋅ X

cT = LB − −
R2

L2
B

− 1 ⋅ R2 − L2
B = LB +

R2 − L2
B

LB
=

R2

LB

Ztangent X =
Z − cT

mT

Xtangent = ( R2

LB
− Ztangent) LB

R2 − L2
B

Ztangent = Zdet = LD − L0 ≃ LD

Xtangent ≃ ( (p/0.3B)2

LB
− LD) LB

(p/0.3B)2 − L2
B

LB = 1.0 m
LD = 2.5 m

LS = 1 m

p

θ

LB

θ
R

R

Dump

Dipole 
B ⦿

Z

X

Ldipole

Zexit

LS

Xexit

DetectorZdet

: T
an

ge
nt

⃗r trk

L0

LD

(0,0)

p[GeV] = 0.3 ⋅ B[T] ⋅ R[m]

Magnet requirements
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Timing cut

๏ The time it takes a bkg photon to fly from  to the calorimeter 
face at , is  
๏ with ,  and  and  

๏ We trigger at  (Eu.XFEL clock) and open a short time window  
๏ most signal (and bkg) photons will arrive within  
๏ almost all bkg hadrons will arrive after that - need ~0.1 ns resolution

z0 = 0
z1 = zD + LD/2 + LV = 3.65 m t1 = t0 + (12 + Δt) ns
zD = 1 m LD = 0.3 m LV = 2.5 m t0 = 0

t0 Δt
Δt ≃ 0.5 ns

*BACKGROUND* 
30 cm long dump 

E > 0.5 GeV

t0

*SIGNAL* 
(MadGraph) 

30 cm long dump 
E > 0.5 GeV

Neutrons/protons 
fly slower…

t1
t0 Δt

t1

Take 30 cm dump 
just to have stats. 
LUXE-NPOD has 

nominally LD = 1 m
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๏ Assuming 
๏ one year of running with  live seconds, i.e. recorded BXs 
๏ rejection is  based on kinematic cuts & timing (see backup) 
๏ neutron-to-photon fake rate is   (see backup) 

๏ Number of background two-photon events is  
๏  
๏  
๏  

๏ See backup for 
๏ the calculation of the probabilities  
๏ the rejection details and possible technologies

T ∼ 107

Rsel ≲ 10−3

fn→γ ≲ 10−3

Nbkg = PbkgRselToperation
bkg = 2γ
bkg = 2n → 2γ
bkg = γ + n → 2γ

Pbkg

Max 
Nbkg

LUXE 
NPOD

Electrons 
on dump

N2γ 0.8 267.8

N2n⟶2γ 0.5 8.7

Nγ+n⟶2γ 1.2 82.8

Assumptions Value

Top 1E+07

Rsel 1E-03

fn⟶γ 1E-03

Parameter LUXE 
NPOD

Electrons  
on dump

Rγ/n (fit) 0.0013 0.0062

μn (count) 9.8 42.6

μγ (extrap.) 0.013 0.264

Background estimation
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ALPs production
Na ≈ ℒeff ∫ dEγ

dNγ

dEγ
σa(Eγ, Z)(e− LD

La − e− LV + LD
La ) 𝒜

La = cτa
pa

ma

pa ≈ E2
γ − m2

a
ℒeff = NeNBX

9ρW X0

7AWm0

๏  is the number of electron per bunch and  is the number of BXs assumed 
๏  is the incoming photon energy 
๏  is the effective luminosity, where  is the Tungsten density,  is its mass number and  is its 

radiation length.  is the nucleon mass 
๏  is the ALP propagation length, where  is its proper lifetime and  is its momentum 
๏  is the Primakoff production cross section of the ALP in the dump 
๏  is the angular acceptance times efficiency of the detector 
๏  is the differential photon flux per initial electron, includes photons from the electron-laser interaction, 

as well as secondary photons produced in the EM shower which develops in the dump 
๏  is the dump’s length. The dump is positioned ∼13 m away from the electron-laser interaction region 
๏  is the length of the decay volume 
๏ The decay rate of the ALP into two photons is 

Ne = 1.5 × 109 NBX( = 107)
Eγ
ℒeff ρW AW X0

m0 ∼ 930 MeV
La τa pa
σa(Eγ, Z)
𝒜
dNγ /dEγ

LD = 1 m
LV = 2.5 m

Γa→γγ = m3
a /(64πΛ2

a)
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Scalar and Naturalness
๏ The  coupling induces quadratically divergent, additive 

contribution to the scalar mass-square,   
๏  is the scale in which NP is required to appear in order to cancel 

the quadratic divergences  
๏ This leads to a naturalness bound:

 

๏ LUXE-NPOD is expected to reach the sensitivity required to probe the 
edge of the parameter space of natural models in its phase-1

ϕ − γ
δm2

ϕ ∼ Λ4
UV/(16π2Γ2

ϕ)
ΛUV

Γϕ ≳ 4 × 105 GeV ( ΛUV

TeV )
2 200 MeV

mϕ
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Signal MC prod. with MadGraph
๏ Generate this process: a nuc -> ax nuc where a is photon, nuc 

is the nucleus of the tungsten dump and ax is the ALP 
(Primakoff production) 

๏ The nuclear form factor was obtained from Iftah Galon and 
implemented in the model 

๏ MadGraph does not smear the vertex position, so all 
collisions happen at z=0, t=0 

๏ Moreover MadGraph decays the ALP instantaneously 
๏ The 2 photons are produced at z=0 and hence we need to 

displace them according to the ALP’s lifetime
LD = 1 m

LV = 2.5 m
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Signal MC prod. with MadGraph
๏ The distance of decay ( ) for each ALP is obtained by randomly drawing a length 

from the decay length distribution of the ALP, where: 
๏ the decay length is  
๏ the direction is determined by the momentum of ALP 
๏  is randomly drawn number from  

๏ Once  is obtained, the two photons are shifted to that position 
๏ if  we proceed to next stage, otherwise the event is 

rejected 
๏ given the opening angle of the photons and the distance they still need to travel to 

detector, we check if the photons impinge the detector or not.  
๏ if both photons impinge the detector and , then that event is 

accepted 
๏ The acceptance 𝒜 is the number of events with both photons passing the energy cut 

and geometric constraints divided by the total number of events generated 
๏ Once the geometric acceptance is obtained, the factor is multiplied by the effective 

luminosity and the cross-section of production to get the number of ALP events 
(see earlier slide) where  and where the sum is over sum 

over the incoming photon beam energy distribution  

rvtx

La = cτapa/ma

rvtx e−La

⃗rvtx
LD < rvtx cos θa < LD + LV

Eγ > 0.5 GeV

Na = ℒeff ∑
i

σi𝒜iNγ,i

Nγ,i

Analytical

MadGraph



Noam Tal Hod, WIS July 30 2021 56

Signal MC prod. with MadGraph

More than 90% of the photons are captured by a 
detector with radius of 1 m 
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Signal MC prod. with MadGraph

Photons 
energy

ALPs E 
in acc.
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Contours of the expected number of   
events, , for phase-0 and phase-1

a, ϕ → 2γ
Na,ϕ

LUXE-NPOD
phase-1
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The lines correspond to 1 year of data taking. 
The nominal curve is for  which is the 95 % CL equivalent for background free searchNa,ϕ = 3
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LUXE-NPOD
primary new physics production

ξ=3.4, χ=0.65

f=eV- a, gae=10-8

f=eV- ϕ, gϕe=10-8

f=eV- γ a(ϕ), Λa (ϕ)=TeV

f=ψ+ ψ-, q=5 10-5

10-7 10-6 10-5 10-4
10-17

10-16

10-15

10-14

ma,ϕ ,ψ [GeV]

Γ e
V-

f

Γ γ
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New Physics production at the IP

z

Zero beam and/or Compton 
electrons past this point in z

e−

γL

ψ±

a, ϕ
γ

γ
γ

Magnet
EMCal

Interaction 
chamber

Photon beam dump

M
uo

n 
ch

am
be

rPrimary production 
(not to scale)

LD LV

๏ Axion-like particles (ALPs) 
๏ or scalars ( ) 

๏ Milli-charged particles (mCPs) 
๏  and 

X = a, ϕ

mψ ≪ me qψ ≡ qe ≪ e

e�V

e�V

X

�⇤

e�V

e�V

�

X

�(or �⇤)

 �

 +


