

The CLIC Potential For New Physics

EPS-HEP Conference 2021

European Physical Society conference on high energy physics 2021

Online conference, July 26-30, 2021

Jan Klamka, University of Warsaw on behalf of the CLICdp Collaboration

Compact Linear Collider

.

UW

- Novel two-beam acceleration technique
- <u>Normal conducting</u> technology
- High 100 MeV/m gradient, 12 GHz accelerating structures
- **±80% electron beam** polarisation
- Implementation in <u>3 stages</u>

Compact Linear Collider

380 GeV stage:

- presicion Higgs measurements
- presicion **top** measurements
- top threshold scan

1.5 TeV, 3 TeV stages:

- Higgs self-coupling
- top Yukawa coupling

Dedicated **detector concept** optimised for **particle-flow** approach

• more precision measurement: indirect **BSM** constraints

+ direct new physics searches at high energies

Invisible scalar decays

30 July 2021

DM searches mono-photon channel

Most general approach for DM search

Simplified DM Models framework

Vector, **axial-vector** and **scalar** mediators

Coupling **geY = 0.1, 1**

+80%, -80% and no beam polarisation considered Best limits using: $\sigma(Pe=-80\%)/\sigma(Pe=+80\%)$ (sys. uncert. cancel)

<u>Discrimination between</u> vector and axial-vector mediators, with $m_Y = 3.5 \text{ TeV}, m_X = 1 \text{ TeV}$ WIMP mass determination with **1% accuracy** arXiv:2103.06006

Mono-photon – light mediator

arXiv:2107.11194

CLIC

 10^4 M_y [GeV]

 $g_{eeY}g_{\chi\chi Y}$

$$\phi_D = \left(\begin{array}{c} H^+ \\ \frac{1}{\sqrt{2}}(H+iA) \end{array}\right)$$

- m_H [GeV]

Ē

10²

10

Mass difference affects virtuality

of W boson!

 10^{2}

 $m_A - m_H$ [GeV]

JHEP 1812 (2018) 081, arXiv:1809.07712

10

Model simplicity (one "inert" doublet, 5 free parameters)

No couplings to SM fermions, stable DM candidate

Considered **23 benchmark scenarios** respecting current constraints

Full simulation (5 scenarios) and **DELPHES** (23 scenarios) used for detector response

30 July 2021

LCD-Note-2011-006

 $\begin{array}{c} & \vdash \\ \textbf{CLIC: } 44 \ \mu \textbf{m} \\ \textbf{ILC: } 300 \ \mu \textbf{m} \end{array}$

CLIC: 0.5 ns, 0.15 m ILC: 369 ns, 111 m

Huge **beam-induced backgrounds** at CLIC

 $\gamma\gamma
ightarrow had.$ most important (physics, performance)

Mitigation using timing cuts

Not existing in DELPHES CLICdet cards!

 \rightarrow included in **approximate** way with **generator-level cuts**

30 July 2021

W is virtual

Good agreement between **full** and **fast** simulation \rightarrow **realistic predictions** for all scenarios

Wide range of scenarios at **1.5 TeV** and **3 TeV** CLIC analysed

<u>Almost all scenarios could be discovered</u>

Scalars with **masses of 1 TeV accessible** → significant **increase** w.r.t. previous study (based on leptonic channel)

Significance reaching even 50σ

Heavy neutrinos

Based on DELPHES simulation, with $\,e\gamma,\,\gamma\gamma$ backgrounds considered

Observation expected almost up to the kinematic limit

Limits stronger than from LHC and FCC-hh

Semi-leptonic channel allows full neutrino reconstruction

See the poster by Krzysztof Mękała: https://indico.desy.de/event/28202/contributions/105536/

Global EFT fit

 $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \mathcal{O}\left(\Lambda^{-4}\right)$ Based on CLIC combined precision measurements of: Higgs couplings, top-quark observables, WW production and $ee \rightarrow ff$

30 July 2021

Jan Klamka, CLIC potential for new physics

arXiv:1812.02093

General overview

Process	HL-LHC	CLIC
Higgs mixing with heavy singlet	$\sin^2\gamma < 4\%$	$\sin^2\gamma < 0.24\%$
Higgs self-coupling $\Delta \lambda$	$\sim 50\%$ at 68% C.L.	[-8%, 11%] at 68% C.L.
$BR(H \rightarrow inv.)$ (model-independent)		<1% at 95% C.L.
Higgs compositeness scale m_*	$m_* > 3 \mathrm{TeV}$	Discovery up to $m_* = 10 \text{TeV}$
	$(>7 \mathrm{TeV} \mathrm{ for } g_* \simeq 8)$	(40 TeV for $g_* \simeq 8$)
Top compositeness scale m_*		Discovery up to $m_* = 8 \text{ TeV}$
		(20 TeV for small coupling g_*)
Higgsino mass (disappearing track search)	> 250 GeV	> 1.2 TeV
Slepton mass		Discovery up to $\sim 1.5 { m TeV}$
RPV wino mass ($c\tau = 300$ m)	$> 550 \mathrm{GeV}$	> 1.5 TeV
Z' mass (SM couplings)	Discovery up to 7 TeV	Discovery up to 20 TeV
NMSSM scalar singlet mass	$> 650 \mathrm{GeV} (\tan\beta \le 4)$	$> 1.5 \mathrm{TeV} (\mathrm{tan}\beta \leq 4)$
Twin Higgs scalar singlet mass	$m_{\sigma} = f > 1 \text{ TeV}$	$m_{\sigma} = f > 4.5 \mathrm{TeV}$
Relaxion mass (for vanishing mixing)	< 24 GeV	< 12 GeV
Relaxion mixing angle $(m_{\phi} < m_{\rm H}/2)$		$\sin^2 \theta \leq 2.3\%$
Neutrino Type-2 see-saw triplet		> 1.5 TeV (for any triplet VEV)
		$> 10{ m TeV}$ (for triplet Yukawa coupling \simeq 0.1)
Inverse see-saw RH neutrino		$> 10 TeV$ (for Yukawa coupling $\simeq 1$)
Scale $V_{LL}^{-1/2}$ for LFV $(\bar{e}e)(\bar{e}\tau)$		> 42 TeV

BACKUP

30 July 2021

Invisible scalar decays

 $\frac{BR(H_{SM} \rightarrow inv.) < 1\% (95\% CL.)}{(380 \text{ GeV, } 1 \text{ ab}^{-1})}$

 $\frac{BR(H_{SM} \rightarrow inv.) < 0.5\% (95\% CL.)}{(380 \text{ GeV, } 4 \text{ ab}^{-1})}$

Discovery (5 σ) for: BR(H_{SM} \rightarrow inv.) > 3% (1.5%) 380 GeV, 1 ab⁻¹ (4 ab⁻¹)

Eur. Phys. J. Plus (2021) 136: 160

Mono-photon: model discrimination

Mediator type discrimination

<u>Pseudo-data</u>: vector mediator ($m_x = 1$ TeV) <u>Templates</u>: vector and axial-vector mediator

Mass determination

<u>Pseudo-data</u>: vector and axial-vector mediators ($m_x = 1$ TeV)

Mono-photon: light mediator

Influence of sys. uncert.

Fraction of reconstructed signal events

Heavy neutrinos

Dijet mass (signal) Different simulation methods Results as a function of mass splitting

 \rightarrow Scenarios with small mass splitting the most challenging

LW

 $t\bar{t}$ event before and after $\gamma\gamma \rightarrow had$. background suppression

30 July 2021

ee→ff

40

HL-LHC

10

2

optimistic

20

30

 m_{\star} [TeV]

Higgs compositeness scale and

coupling

Jan Klamka, CLIC potential for new physics

10

5

15

20

25

*m*_{*}[TeV]

Top compositeness scale and

coupling

30

35

50

arXiv:1812.02093

40

Disappearing tracks

 \rightarrow Reachable higgsino mass of 1.1 TeV required for exact DM relic density

arXiv:1812.02093

Heavy Scalar Singlets

Limits from **direct** production and **indirect** from Higgs couplings

arXiv:1812.02093