BSM physics at the LHeC and the FCC-eh

Oliver Fischer

Deep Inelastic Scattering Conference 29/07/21

The Large Hadron-Electron Collider at the HL-LHC

LHeC and FCC-he Study Group

P. Agostini et al., [arXiv:2007.14491 [hep-ex]]

LHeC $E_e=50$ GeV, $\sqrt{s}\simeq 1.2$ TeV, $\mathcal{L}_{int}=1$ ab $^{-1}$, earliest start 2032

FCC-he $E_e=50$ GeV, $\sqrt{s}\simeq 3.2$ TeV, $\mathcal{L}_{int}=3$ ab $^{-1}$, parallel to FCC-hh

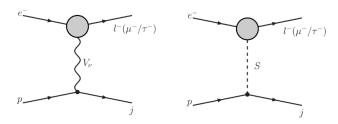
The Large Hadron-Electron Collider at the HL-LHC – chapter 8

•	Sear	rches f	or Physics Beyond the Standard Model	188
	8.1	Introd	uction	188
	8.2	Extens	sions of the SM Higgs Sector	188
		8.2.1	Modifications of the Top-Higgs interaction	189
		8.2.2	Charged scalars	189
		8.2.3	Neutral scalars	190
		8.2.4	Modifications of Higgs self-couplings	191
		8.2.5	Exotic Higgs boson decays	192
	8.3	Search	es for supersymmetry	192
		8.3.1	Search for the SUSY Electroweak Sector: prompt signatures	193
		8.3.2	Search for the SUSY Electroweak Sector: long-lived particles $\dots \dots$	194
		8.3.3	R-parity violating signatures	195
	8.4	Feebly	Interacting Particles	196
		8.4.1	Searches for heavy neutrinos	196
		8.4.2	Fermion triplets in type III seesaw	197
		8.4.3	Dark photons	199
		8.4.4	Axion-like particles	200
	8.5	Anoma	alous Gauge Couplings	201
		8.5.1	Radiation Amplitude Zero	202
	8.6	Theori	es with heavy resonances and contact interaction	202
		8.6.1	Leptoquarks	203
		8.6.2	Z' mediated charged lepton flavour violation	204
		8.6.3	Vector-like quarks	205
		8.6.4	Excited fermions (ν^*, e^*, u^*)	206
		8.6.5	Colour octet leptons	206
		8.6.6	Quark substructure and Contact interactions	206

Beyond the Standard Model studies at *ep*

Motivation for BSM at least as strong as ever, cf.

Website listing known anomalies: https://hepcomm.github.io/hepmist/

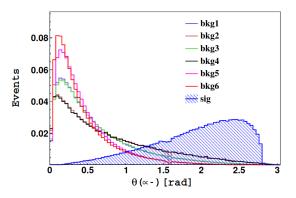

- ► Electron-proton collider ideal laboratory to study common features of electrons and quarks with EW / VBF production, LQ,multi-jet final states, forward objects
- Upside:
 - Small background (no QCD interaction between e and p)
 - Very low pileup
- **Downside:** low production rates for new physics processes due to small \sqrt{s}
- ▶ Increased engagement from theory community in recent years, summarised in "chapter 8" (almost 100 articles).

Here: brief overview over some of the latest contributions.

Searching for charged lepton flavor violation at ep colliders

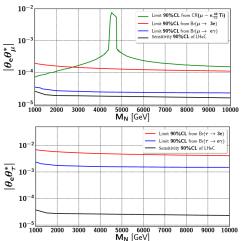
S. Antusch, A. Hammad and A. Rashed, JHEP 03 (2021), 230 [arXiv:2010.08907 [hep-ph]].

Lepton flavor violating processes



- An effective vertex couples incoming electron to a muon or a tau and a neutral scalar or vector boson.
- ► Flavor changing physics parametrised via an effective vertex coupling of leptons with Higgs, photon, and Z.
- Analysis at the reconstructed level.

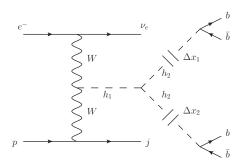
Backgrounds: small cross sections, well separable


#	Backgrounds τ final state	$\sigma_{(LHeC)}[Pb]$
bkg1	$pe^- \rightarrow Z/\gamma^* (\rightarrow \tau^- \tau^+) \nu_l j$	0.0316
bkg2	$pe^- \rightarrow W^{\pm}(\rightarrow \tau^{\pm} \nu_{\tau}) e^- j$	0.2657
bkg3	$pe^- \rightarrow ZZ(\rightarrow \tau^-\tau^+) \nu_l j$	1.1×10^{-5}
bkg4	$pe^- \rightarrow Z(\rightarrow \tau^- \tau^+)W^{\pm}(\rightarrow \tau^{\pm} \nu_{\tau}) \nu_l j$	2.64×10^{-5}

#	Backgrounds μ final state	$\sigma_{(LHeC)}[Pb]$
bkg1	$pe^- \rightarrow Z/\gamma^* (\rightarrow \mu^- \mu^+) \nu_l j$	0.0316
bkg2	$pe^- \rightarrow W^{\pm}(\rightarrow \mu^{\pm} \nu_{\mu}) e^- j$	0.2657
bkg3	$pe^- \rightarrow Z/\gamma^* (\rightarrow \tau^- \tau^+ \rightarrow \text{leptons}) \nu_l j$	9.1×10^{-4}
bkg4	$pe^- \rightarrow W^{\pm}(\rightarrow \tau^{\pm} \nu_{\tau} \rightarrow \text{leptons}) e^- j$	0.0451
bkg5	$pe^- \rightarrow ZZ(\rightarrow \mu^-\mu^+) \nu_l j$	1.1×10^{-5}
bkg6	$pe^- \rightarrow Z(\rightarrow \mu^- \mu^+)W^{\pm}(\rightarrow \mu^{\pm} \nu_{\mu}) \nu_l j$	2.64×10^{-5}

Cut-based optimisation of signal-to-background ratio.

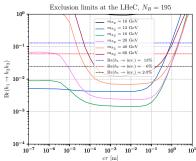
Sensitivity to flavor violation



- Model independent limits on form factors.
- Recast in specific model, here: sterile neutrinos.
- ► Flavor violation proportional to $|\theta_e\theta_\alpha^*|$

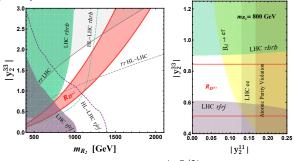
Exotic Higgs decays into displaced jets at the LHeC

K. Cheung, O. Fischer, Z. S. Wang and J. Zurita, JHEP 02 (2021), 161 [arXiv:2008.09614 [hep-ph]].

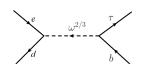

Extending the SM with a complex neutral scalar singlet S

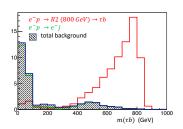
- ► *S* can couple to and mix with the SM Higgs field.
- ▶ Physical fields: h_1 ('Higgs'), h_2 with $m_{h_2} = \mathcal{O}(10)$ GeV.
- ▶ h_2 production at LHeC: $h_1 \rightarrow 2h_2$ with small branching ratio.
- ▶ Decay rate of h_2 suppressed by mixing \Rightarrow long-lived particle

Sensitivity


- ► Consider only CC Higgs production: $e^-p \rightarrow \nu_e h_1 j$.
- ▶ $h_1 \rightarrow 2h_2 \rightarrow 4b$ with two displaced vertices.
- Analysis at the reconstructed level.
- From events with $n_{jet} \ge 5$, reconstruct m_{h_2} , require displacement. "Delphes with displacement." https://sites.google.com/site/leftrighthep/delphes.
- Inclusive backgrounds: $e^-p \rightarrow \nu_e + n_b b + n_j j + n_\tau \tau$

Testing the $R_{D^{(*)}}$ Anomaly at the LHeC


G. Azuelos, O. Fischer and S. Jana, [arXiv:2012.11514 [hep-ph]].


The R_2 Leptoquark

- ightharpoonup Extend the SM with the $R_2=egin{pmatrix} \omega^{5/3} \ \omega^{2/3} \end{pmatrix}$ leptoquark.
- ▶ Yukawa couplings of R_2 : $q_R L_L \propto y_1$ and $Q_L \ell_R \propto y_2$
- The component $\omega^{2/3}$ can explain the R_{D^*} anomaly: ${\rm Br}(B^0 \to B^{*-} \tau^+ \nu_\tau)/{\rm Br}(B^0 \to B^{*-} \mu^+ \nu_\mu)$
- ► LHC: R₂ pair produced, limits on 3rd-generation searches, di-lepton, jets plus MET, ...
- ► Also: atomic parity violation, rare *B* meson decays.

Signature at LHeC

- **s**-channel resonance with τb final state.
- ▶ Cross section proportional to y_1^{11} .
- Fix $y_1^{23} = 1$, y_1^{33} to explain $R_{D^{(*)}}$.
- Analysis at the reconstructed level, including several background processes, corrected LQ mass.
- ▶ LHeC is sensitive to $y_2^{11} \sim 0.02$ for $m_{R_2} = 800$ GeV.

Displaced Neutrino Jets at the LHeC

G. Cottin, O. Fischer, S. Mandal, M. Mitra and R. Padhan, [arXiv:2104.13578 [hep-ph]].

Leptoquark \tilde{R}_2 and longlived sterile neutrino

$$\mathcal{L}_{LQ} = -Y_{ij} \bar{d}_R^i \tilde{R}_2^a \epsilon^{ab} L_L^{j,b} + Z_{ij} \bar{Q}_L^{i,a} \tilde{R}_2^a N_R^j + \text{H.c.}$$

$$\begin{array}{c} LQLQ \rightarrow eejj & -\text{Observed} \\ -\text{Expected} \\ -\text{Theory}(\beta_{\text{ed}}=1) \\ -\text{Theory}(\beta_{\text{ed}}=0.22) \\ -\text{Theory}(\beta_{\text{ed}}=0.04) \end{array}$$

$$\begin{array}{c} Q_L^i \tilde{R}_2^i N_R^j + \text{H.c.}$$

$$\begin{array}{c} LQLQ \rightarrow eejj & -\text{Observed} \\ -\text{Expected} \\ -\text{Theory}(\beta_{\text{ed}}=0.22) \\ -\text{Theory}(\beta_{\text{ed}}=0.04) \end{array}$$

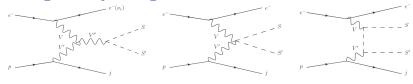
$$\begin{array}{c} Q_L^i \tilde{R}_2^i N_R^j + \text{H.c.}$$

- N with GeV mass long lived.
- $ightharpoonup ilde{R}$ with dominant branching into qN difficult to study at LHC
- Can be produced in *ep* collisions: $ep \to \tilde{R} \to jN$, with $N \to$ displaced fat jet
- ▶ Less than 120 fb⁻¹ for 5σ for $M_N \sim 10$ GeV and $Z \sim 0.1$
- Significant improvement from positron-proton scattering.

Doubly Charged Higgs Production at Future ep Colliders

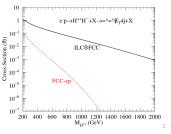
X. H. Yang and Z. J. Yang, [arXiv:2103.11412 [hep-ph]].

Extending the SM with a $SU(2)_L$ triplet scalar: Δ


Motivation: type II seesaw for neutrino masses:

$$\mathcal{L}_{Y_{\Delta}} = Y_{\Delta} \bar{\ell}^c i \sigma^2 \Delta \ell + H.c.$$

 $\Rightarrow m_{\nu} = Y_{\Delta} \sqrt{2} v_{\Delta}$


- ▶ Lepton flavor violating processes $\tau \to \bar{l_i} l_j l_k$ and $\mu \to \bar{e}ee$ mediated at tree level and constrain Y_{Δ} .
- ▶ Constraints from precision measurements: $v_{\Delta} \leq 1$ GeV.
- ▶ LHC searches for doubly charged scalars only stringent when $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ is the dominant decay mode.

cf. also S. Antusch et al., JHEP 02 (2019), 157 [arXiv:1811.03476 [hep-ph]].

Searching doubly charged scalars at FCC-he

- Scalar production via vector boson fusion.
- Search for two doubly (and singly) charged scalars, decaying to $2SS\mu$ plus jets.
- ▶ Signal: analytical calculation \rightarrow simulation with vegas.
- ▶ Background: $e^-p \rightarrow e(\nu_2)t\bar{t}W^{\pm}j \rightarrow Madgraph5$.

Other interesting articles

- A. Jueid, J. Kim, S. Lee and J. Song, "Studies of nonresonant Higgs pair production at electron-proton colliders," [arXiv:2102.12507 [hep-ph]].
- K. Cheung and Z. S. Wang,
 "Physics potential of a muon-proton collider," [arXiv:2101.10476 [hep-ph]].
- G. D. Kribs, D. McKeen and N. Raj, "Breaking up the Proton: An Affair with Dark Forces," Phys. Rev. Lett. 126 (2021) no.1, 011801 [arXiv:2007.15655 [hep-ph]].
- A. Gutiérrez-Rodríguez, M. A. Hernández-Ruíz, E. Gurkanli, V. Ari and M. Köksal, "Study on the anomalous quartic $W^+W^-\gamma\gamma$ couplings of electroweak bosons in e^-p collisions at the LHeC and the FCC-he," Eur. Phys. J. C 81 (2021) no.3, 210 [arXiv:2005.11509 [hep-ph]].

Conclusions

- The LHeC generates a lot of interest in the pheno community.
- Driving factor: complementary to pp and ee colliders.
- Opportunities for BSM that is hidden at the LHC:
 - ⋆ Displaced vertices from long lived particles;
 - ★ Lepton flavor violation (electron-tau);
 - ⋆ Not-too-heavy scalars;
 - ★ GeV-scale bosons.
- Not to forget:
 - ⋆ ep is essential to fully exploit pp measurements due to PDF.
 - * Adds significantly to Higgs and electroweak measurements.