

New physics explanations of a_{μ} in light of the FNAL muon g – 2 measurement

Peter Athron Wojciech Kotlarski

Csaba Balazs Dominik Stöckinger

Douglas HJ Jacob Hyejung Stöckinger-Kim

(speaker)

Date: 28th July 2021

arXiv:2104.03691

Muon g-2 Discrepancy

Latest Experiment Values

SM Prediction

$$a_{\mu}^{SM} = 116591810(1)_{EW}(40)_{HVP}(18)_{Hlbl} \times 10^{-11}$$

Brookhaven Value

$$a_{\mu}^{BNL} = 116592089(54)_{stat}(33)_{sys} \times 10^{-11}$$
 $\Delta a_{\mu}^{BNL} = 279 \pm 76 \times 10^{-11}$

Deviation:

$$3.7\sigma$$

Muon g-2 Discrepancy

Latest Experiment Values

SM Prediction

$$a_{\mu}^{SM} = 116591810(1)_{EW}(40)_{HVP}(18)_{Hlbl} \times 10^{-11}$$

Brookhaven Value

$$a_{\mu}^{BNL} = 116592089(54)_{stat}(33)_{sys} \times 10^{-11}$$

$$\Delta a_{\mu}^{BNL} = 279 \pm 76 \times 10^{-11}$$

$$3.7\sigma$$

 3.3σ

Deviation:

Fermilab Value

$$a_{\mu}^{FNAL} = 116592040(54)_{exp} \times 10^{-11}$$

$$\Delta a_{\mu}^{FNAL} = 230 \pm 69 \times 10^{-11}$$

Muon g-2 Discrepancy

Latest Experiment Values

SM Prediction

$$a_{\mu}^{SM} = 116591810(1)_{EW}(40)_{HVP}(18)_{Hlbl} \times 10^{-11}$$

Brookhaven Value

$$a_{\mu}^{BNL} = 116592089(54)_{stat}(33)_{sys} \times 10^{-11}$$

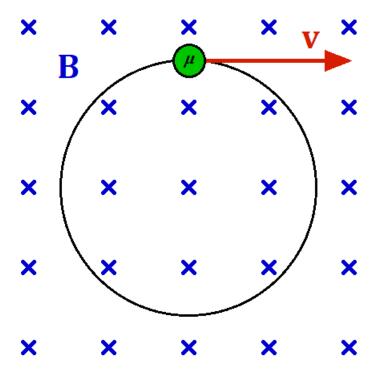
$$\Delta a_{\mu}^{BNL} = 279 \pm 76 \times 10^{-11}$$

Fermilab Value

$$a_{\mu}^{FNAL} = 116592040(54)_{exp} \times 10^{-11}$$

$$\Delta a_{\mu}^{FNAL} = 230 \pm 69 \times 10^{-11}$$

$$3.3\sigma$$

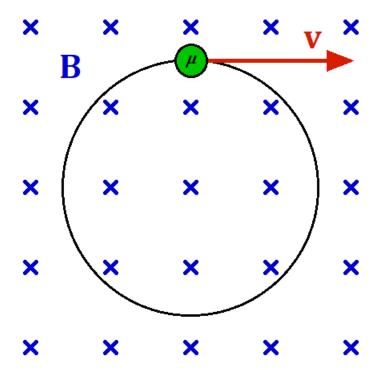

 3.7σ

New World Average

$$a_{\mu}^{2021} = 116592061(41)_{exp} \times 10^{-11}$$

$$\Delta a_u^{2021} = 251 \pm 59 \times 10^{-11}$$
 4.2 σ !

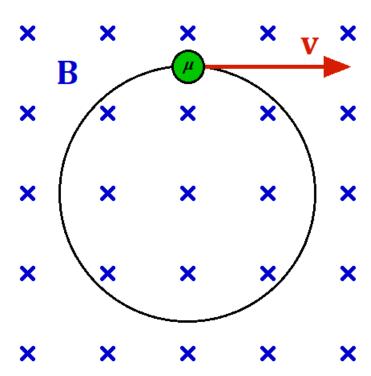
Quantum Mechanics



Quantum Mechanics

Magnetic Moment:

$$\vec{M} = g \frac{q}{2 m} \vec{L}$$

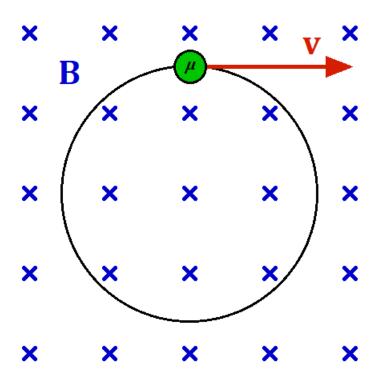


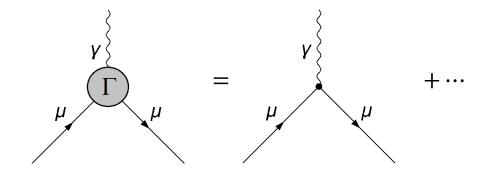

Quantum Mechanics

Magnetic Moment:

$$\vec{M} = g \frac{q}{2 m} \vec{L}$$

Quantum Field Theory

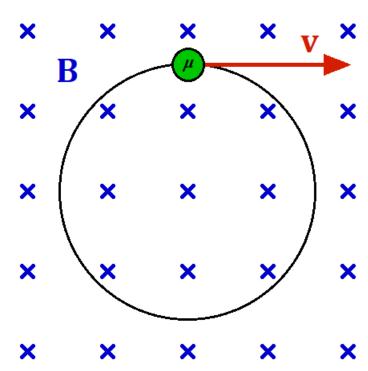


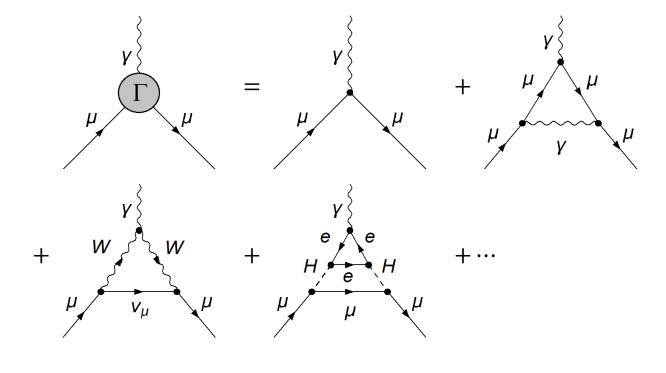

Quantum Mechanics

Magnetic Moment:

$$\vec{M} = g \frac{q}{2 m} \vec{L}$$

Quantum Field Theory

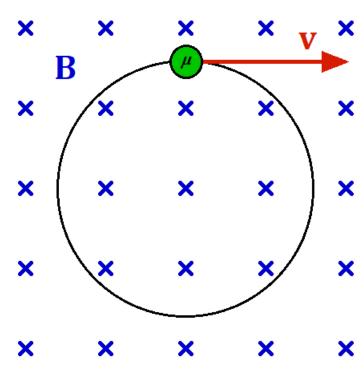



Quantum Mechanics

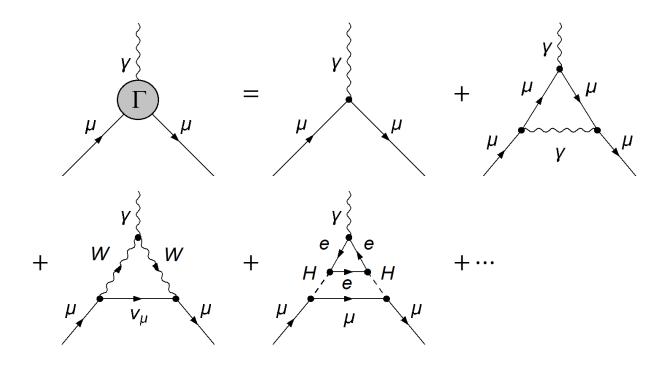
Magnetic Moment:

$$\vec{M} = g \frac{q}{2 m} \vec{L}$$

Quantum Field Theory



Quantum Mechanics


Magnetic Moment:

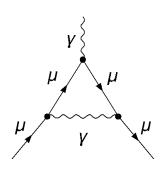
$$\vec{M} = g \frac{q}{2 m} \vec{L}$$

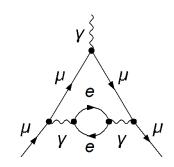
Quantum Field Theory

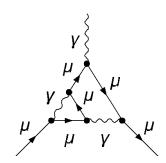
Anomalous Magnetic Moment: a = (g - 2)/2

Standard Model Contributions to Muon g-2

Quantum Electrodynamics Contributions


Electroweak Contributions

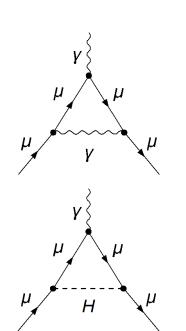


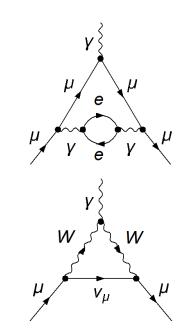

Standard Model Contributions to Muon g-2

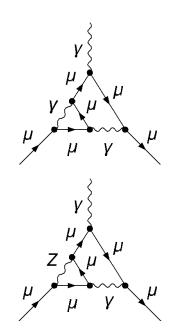
Quantum Electrodynamics Contributions

$$a_{\mu}^{QED} \times 10^{11} = 116584718.931(104)$$

Electroweak Contributions


Standard Model Contributions to Muon g-2

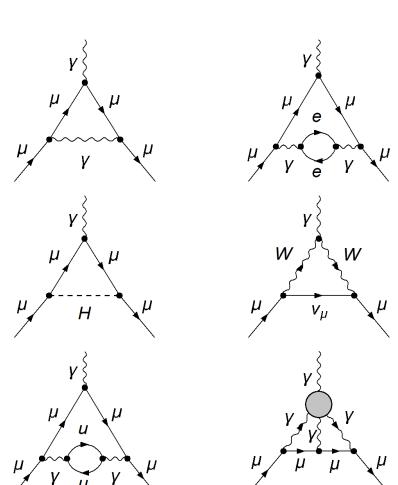

Quantum Electrodynamics Contributions

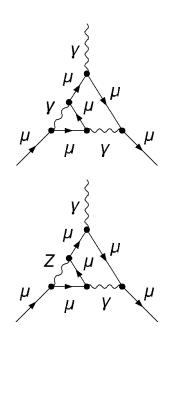

$$a_{\mu}^{\it QED} \times 10^{11} {=} 116\,584\,718.931(104)$$

Electroweak Contributions

$$a_{\mu}^{EW} \times 10^{11} = 153.6(1.0)$$

Standard Model Contributions to Muon g-2


Quantum Electrodynamics Contributions


$$a_{\mu}^{\it QED} \times 10^{11} {=} 116\,584\,718.931(104)$$

Electroweak Contributions

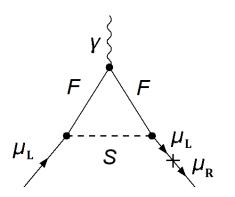
$$a_{\mu}^{EW} \times 10^{11} = 153.6(1.0)$$

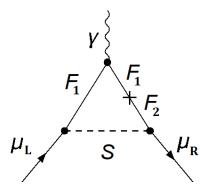
$$a_{\mu}^{HVP} \times 10^{11} = 6845(40)$$

 $a_{\mu}^{Hlbl} \times 10^{11} = 92(18)$

Single Field Extensions

Simple Explanations of Muon g-2


Model	Spin	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Result for $\Delta a_{\mu}^{\rm BNL}$, Δa_{μ}^{2021}
1	0	(1, 1, 1)	Excluded: $\Delta a_{\mu} < 0$
2	0	(1 , 1 ,2)	Excluded: $\Delta a_{\mu} < 0$
3	0	(1, 2, -1/2)	$\operatorname{Updated}$
4	0	(1, 3, -1)	Excluded: $\Delta a_{\mu} < 0$
5	0	$(\overline{3},1,1/3)$	$\operatorname{Updated}$
6	0	$(\overline{3}, 1, 4/3)$	Excluded: LHC searches
7	0	$(\overline{3}, 3, 1/3)$	Excluded: LHC searches
8	0	(3, 2, 7/6)	$\operatorname{Updated}$
9	0	(3, 2, 1/6)	Excluded: LHC searches
10	1/2	$({f 1},{f 1},0)$	Excluded: $\Delta a_{\mu} < 0$
11	1/2	$({f 1},{f 1},-1)$	Excluded: Δa_{μ} too small
12	1/2	$({f 1},{f 2},-1/2)$	Excluded: LEP lepton mixing
13	1/2	(1, 2, -3/2)	Excluded: $\Delta a_{\mu} < 0$
14	1/2	(1, 3, 0)	Excluded: $\Delta a_{\mu} < 0$
15	1/2	(1, 3, -1)	Excluded: $\Delta a_{\mu} < 0$
16	1	(1, 1, 0)	Special cases viable
17	1	(1, 2, -3/2)	UV completion problems
18	1	(1, 3, 0)	Excluded: LHC searches
19	1	$(\overline{\bf 3},{\bf 1},-2/3)$	UV completion problems
20	1	$(\overline{\bf 3},{\bf 1},-5/3)$	Excluded: LHC searches
21	1	$(\overline{\bf 3},{f 2},-5/6)$	UV completion problems
22	1	$(\overline{\bf 3},{f 2},1/6)$	Excluded: $\Delta a_{\mu} < 0$
23	1	$(\overline{\bf 3},{\bf 3},-2/3)$	Excluded: proton decay



BSM Models

Chirality Flip

Contributions from diagrams with an internal chirality flip enhanced by a factor:

$$\frac{\lambda_{BSM}^2}{\lambda_{\mu}^2}$$

Scalar Leptoquark Singlet

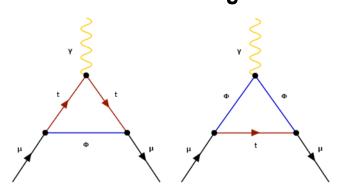
Leptoquark	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
S_1	$(\overline{3}, 1, 1/3)$	1/3

 S_1

Interacts with the standard model through:

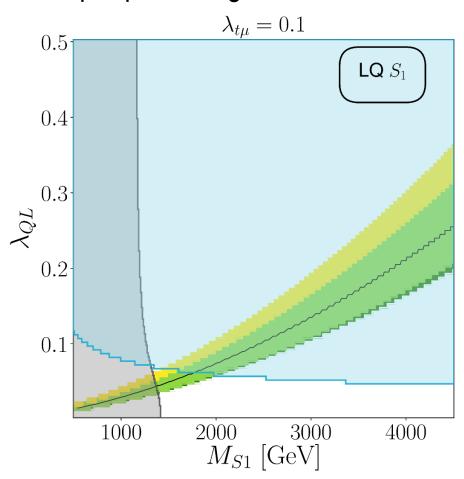
$$\mathcal{L}_{BSM} = (\lambda_{QL}Q.LS_1 + \lambda_{t\mu}t\mu S_1^* + h.c.)$$
$$-M_{S1}^2|S_1|^2 - g_{HP}|H|^2|S_1|^2 - \frac{\lambda_{\phi}}{2}|S_1|^4$$

Scalar Leptoquark Singlet

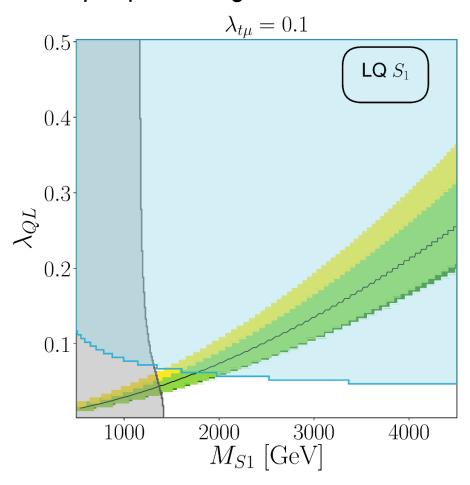

Leptoquark	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
S_1	$(\overline{3}, 1, 1/3)$	1/3

 S_1

Interacts with the standard model through:


$$\mathcal{L}_{BSM} = (\lambda_{QL}Q.LS_1 + \lambda_{t\mu}t\mu S_1^* + h.c.)$$
$$-M_{S1}^2|S_1|^2 - g_{HP}|H|^2|S_1|^2 - \frac{\lambda_{\phi}}{2}|S_1|^4$$

Contributes to muon g-2


Scalar Leptoquark Singlet

Now Ruled Out
Still Viable
Newly Viable

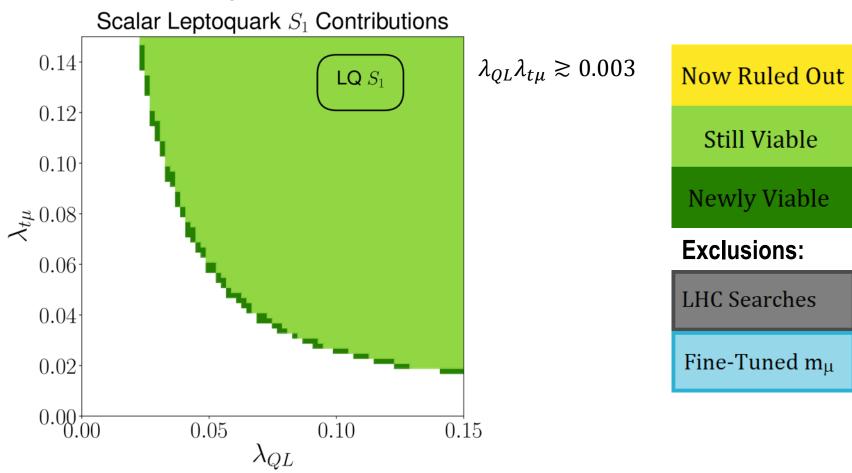
TECHNISCHE UNIVERSITÄT DRESDEN

Scalar Leptoquark Singlet

Now Ruled Out

Still Viable

Newly Viable


Exclusions:

LHC Searches

Fine-Tuned m_{μ}

Scalar Leptoquark Singlet

7

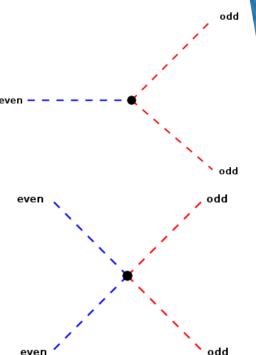
Two Field Extensions

Simple Explanations of Muon g-2

	$+\mathbb{Z}_2$	Result for $\Delta a_{\mu}^{\mathrm{BNL}}$, Δa_{μ}^{2021}
$(SU(3)_C \times SU(2)_L \times U(1)_Y)_{\text{spin}}$		F F
$(1,1,0)_0-(1,1,-1)_{1/2}$	No	Projected LHC 14 TeV exclusion, not confirmed
	Yes	Updated
$(1,1,-1)_0-(1,1,0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
$(1,2,-1/2)_0-(1,1,0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
$(1,1,0)_0 - (1,2,-1/2)_{1/2}$	No	Excluded: LHC searches
$(1,1,0)_0 - (1,2,-1/2)_{1/2}$	Yes	$\operatorname{Updated}$
(1.1.0) (1.1.1)	No	Excluded: LEP contact interactions
$(1,1,0)_0 - (1,1,-1)_{1/2}$	Yes	Viable with under abundant DM
$(1,1,-1)_0-(1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
$(1,2,-1/2)_0-(1,2,-1/2)_{1/2}$	Both	Excluded: LEP search
(1.1.0) (1.1.1)	No	Excluded: LHC searches
$(1,1,0)_0 - (1,1,-1)_{1/2}$	Yes	Viable with under abundant DM
(1.1.0) (1.1.1)	No	Excluded: LHC searches + LEP contact interactions
$(1,1,0)_0 - (1,1,-1)_{1/2}$	Yes	Viable with under abundant DM
$(1,3,0)_0-(1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
(4.4.0) (4.4.1)	No	Excluded: LHC searches
$(1,1,0)_0 - (1,1,-1)_{1/2}$	Yes	Viable with under abundant DM
$(1,3,-1)_0-(1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
$(1,3,-1)_0-(1,3,0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
$(1,1,-1)_{1/2}-(1,1,0)_1$	No	Excluded: $\Delta a_{\mu} < 0$
$(1,2,-1/2)_{1/2}-(1,1,0)_1$	No	Excluded: $\Delta a_{\mu} < 0$
$(1,2,-1/2)_{1/2}-(1,3,0)_1$	No	Excluded: LHC searches + LEP contact interactions
$(1,1,0)_{1/2}-(1,1,1)_1$	No	Excluded: LHC searches + LEP contact interactions
$(1,2,-1/2)_{1/2}-(1,1,-1)_1$	No	Excluded: LHC searches + LEP contact interactions
$(1,3,-1)_{1/2}-(1,3,0)_1$	No	Excluded: $\Delta a_{\mu} < 0$

Two Field Extensions

Simple Explanations of Muon g-2


	$(SU(3)_C \times SU(2)_L \times U(1)_Y)_{\text{spin}}$	$+\mathbb{Z}_2$	Result for $\Delta a_{\mu}^{\mathrm{BNL}}$, Δa_{μ}^{2021}
	$(1,1,0)_0-(1,1,-1)_{1/2}$ $(1,1,-1)_0-(1,1,0)_{1/2}$		Projected LHC 14 TeV exclusion, not confirmed
			Updated
			Excluded: $\Delta a_{\mu} < 0$
	$(1,2,-1/2)_0-(1,1,0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
	$(1,1,0)_0-(1,2,-1/2)_{1/2}$	No	Excluded: LHC searches
	$(1,1,0)_0 - (1,2,-1/2)_{1/2}$	Yes	Updated
	$({f 1},{f 1},0)_0-({f 1},{f 1},-1)_{1/2}$	No	Excluded: LEP contact interactions
	$({f 1},{f 1},0)_0-({f 1},{f 1},-1)_{1/2}$	Yes	Viable with under abundant DM
	$(1,1,-1)_0-(1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
	$(1,2,-1/2)_0-(1,2,-1/2)_{1/2}$	Both	Excluded: LEP search
	(1.1.0) (1.1.1)	No	Excluded: LHC searches
	$(1,1,0)_0-(1,1,-1)_{1/2}$		Viable with under abundant DM
	$(1,1,0)_0-(1,1,-1)_{1/2}$		Excluded: LHC searches $+$ LEP contact interactions
			Viable with under abundant DM
	$(1,3,0)_0-(1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
	$(1,1,0)_0 - (1,1,-1)_{1/2}$		Excluded: LHC searches
	(1,1,0)0 $(1,1,1)1/2$	Yes	Viable with under abundant DM
	$(1,3,-1)_0-(1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
	$(1,3,-1)_0-(1,3,0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
	$(1,1,-1)_{1/2}-(1,1,0)_1$	No	Excluded: $\Delta a_{\mu} < 0$
	$(1,2,-1/2)_{1/2}-(1,1,0)_1$	No	Excluded: $\Delta a_{\mu} < 0$
	$(1,2,-1/2)_{1/2}-(1,3,0)_1$	No	Excluded: LHC searches + LEP contact interactions
[$(1,1,0)_{1/2}-(1,1,1)_1$	No	Excluded: LHC searches + LEP contact interactions
۲	$(1,2,-1/2)_{1/2}-(1,1,-1)_1$	No	Excluded: LHC searches + LEP contact interactions
	$(1,3,-1)_{1/2}-(1,3,0)_1$	No	Excluded: $\Delta a_{\mu} < 0$

Z2 Symmetry

Z2-odd fields interact only in pairs:

$$\psi_{even} \to \psi_{even}$$

$$\psi_{odd} \to \psi_{odd} e^{i \pi}$$

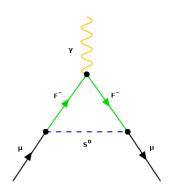
New Fermion and Scalar Coupling to Left-Handed Muon

New Fields	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
$\psi_d = (\psi_d^+, \psi_d^0)$	(1, 2, 1/2)	1,0
φ	(1, 1, 0)	0

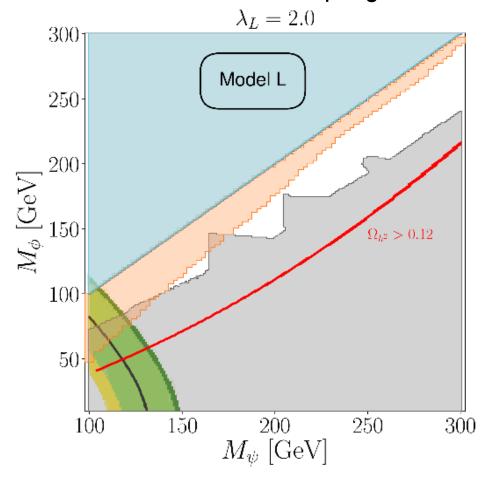
Interacts with the standard model through:
$$\mathcal{L}_{BSM} = (\lambda_L L_L. \psi_d \ \phi - M_\psi \psi_d^c \psi_d + h.c.) - \frac{M_\phi^2}{2} \phi^2$$

Source: 1804.00009

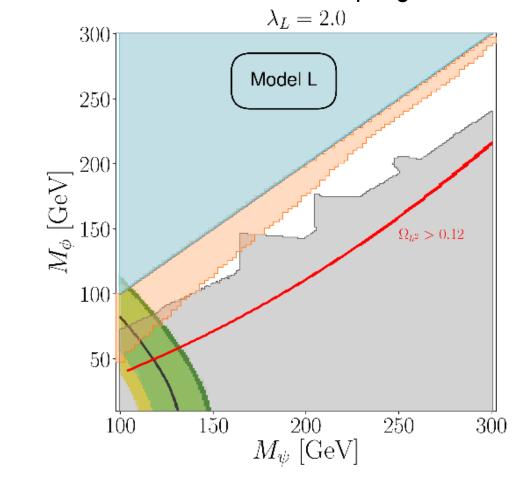
New Fermion and Scalar Coupling to Left-Handed Muon


New Fields	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
$\psi_d = (\psi_d^+, \psi_d^0)$	(1, 2, 1/2)	1,0
φ	(1, 1, 0)	0

Interacts with the standard model through:
$$\mathcal{L}_{BSM} = (\lambda_L L_L. \psi_d \ \phi - M_\psi \psi_d^c \psi_d + h.c.) - \frac{M_\phi^2}{2} \phi^2$$


Contributes to muon g-2

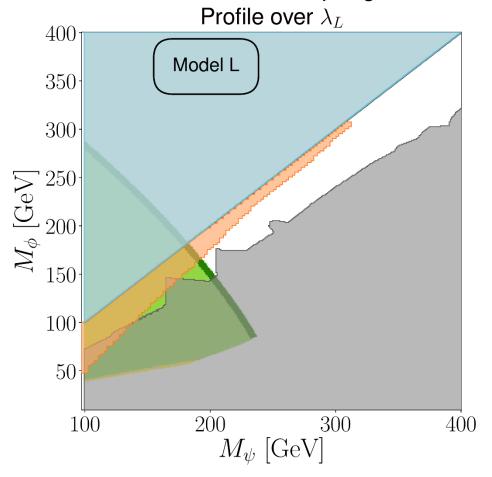
Source: 1804.00009


New Fermion and Scalar Coupling to Left-Handed Muon

Now Ruled Out
Still Viable
Newly Viable

New Fermion and Scalar Coupling to Left-Handed Muon

Now Ruled Out
Still Viable
Newly Viable

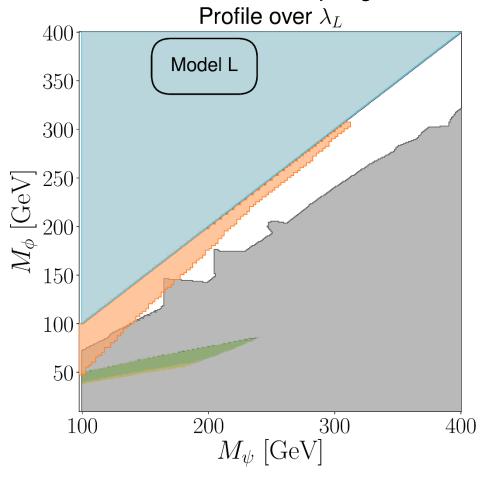

Exclusions:

LHC Searches

Cmp. Spectra

New Fermion and Scalar Coupling to Left-Handed Muon

Now Ruled Out
Still Viable
Newly Viable


Exclusions:

LHC Searches

Cmp. Spectra

New Fermion and Scalar Coupling to Left-Handed Muon

Now Ruled Out
Still Viable
Newly Viable

Exclusions:

LHC Searches

Cmp. Spectra

Pair of New Scalars + Fermion

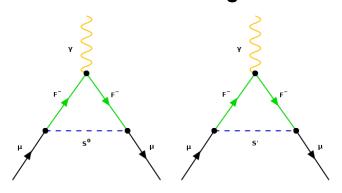
New Fields	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge	
$\psi_{\scriptscriptstyle S}=\psi_{\scriptscriptstyle S}^{-\dagger}$	(1, 1, 1)	1	$\psi_{\scriptscriptstyle S}$
$\phi_s = \phi_s^{0}$	(1, 1, 0)	0	ϕ_s
$\phi_d = (\phi_d^0, \phi_d^-)$	(1, 2, -1/2)	0,-1	ϕ_d

Interacts with the standard model through:

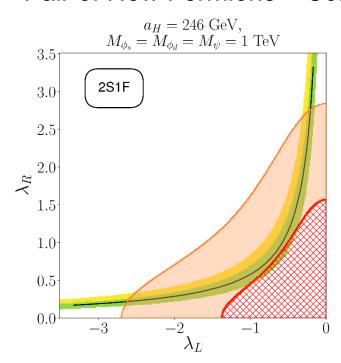
$$\mathcal{L}_{BSM} = (a_H H. \phi_d \phi_s + \lambda_L L_L. \phi_d \psi_s + \lambda_R \phi_s \mu_R^{\dagger} \psi_s^c - M_{\psi} \psi_s^c \psi_s + h. c.) - \frac{M_{\phi d}}{2} |\phi_d|^2 - M_{\phi s}^2 |\phi_s|^2$$

Pair of New Scalars + Fermion

New Fields	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
$\psi_{\scriptscriptstyle S}=\psi_{\scriptscriptstyle S}^{-\dagger}$	(1, 1, 1)	1
$\phi_{\scriptscriptstyle S} = \phi_{\scriptscriptstyle S}^{0}$	(1, 1, 0)	0
$\phi_d = (\phi_d^0, \phi_d^-)$	(1, 2, -1/2)	0,-1

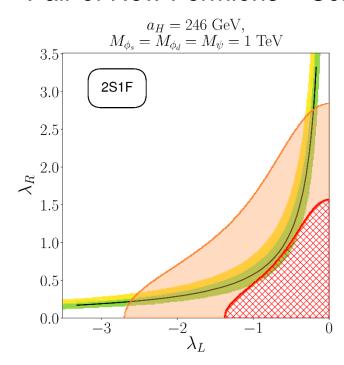


Interacts with the standard model through:


$$\mathcal{L}_{BSM} = (a_H H. \phi_d \phi_s + \lambda_L L_L. \phi_d \psi_s + \lambda_R \phi_s e_R^{\dagger} \psi_s^c - M_{\psi} \psi_s^c \psi_s + h.c.) - \frac{M_{\phi d}}{2} |\phi_d|^2 - M_{\phi s}^2 |\phi_s|^2$$

Contributes to muon g-2

Pair of New Fermions + Scalar

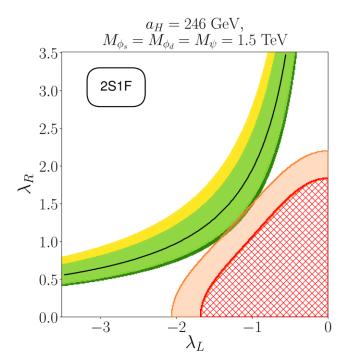

Now Ruled Out

Still Viable

Newly Viable

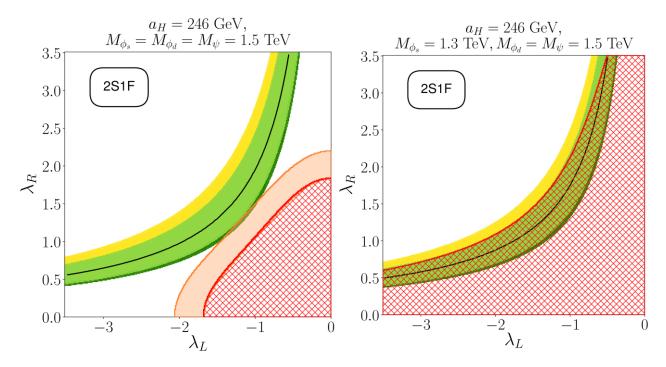
Pair of New Fermions + Scalar

Now Ruled Out

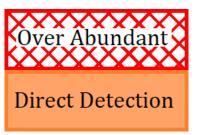

Still Viable

Newly Viable

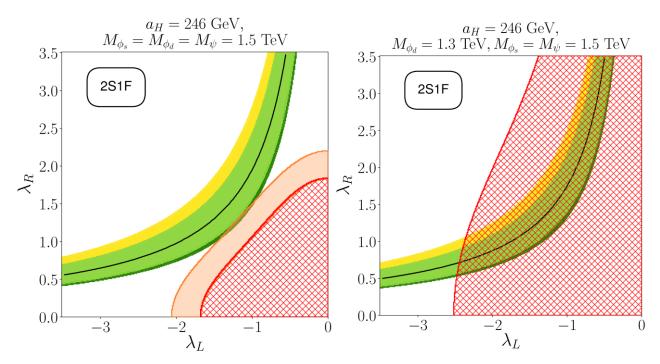
Pair of New Fermions + Scalar


Still Viable

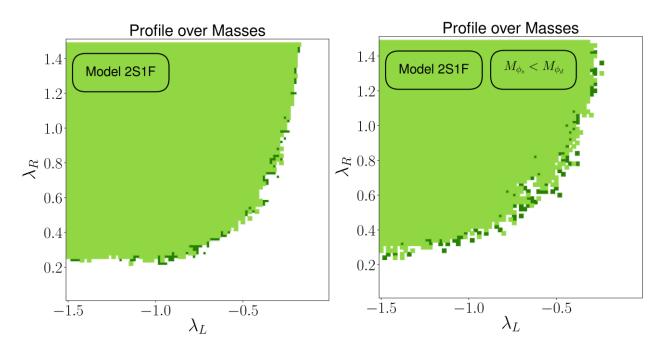
Newly Viable

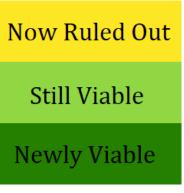


Pair of New Fermions + Scalar



Pair of New Fermions + Scalar



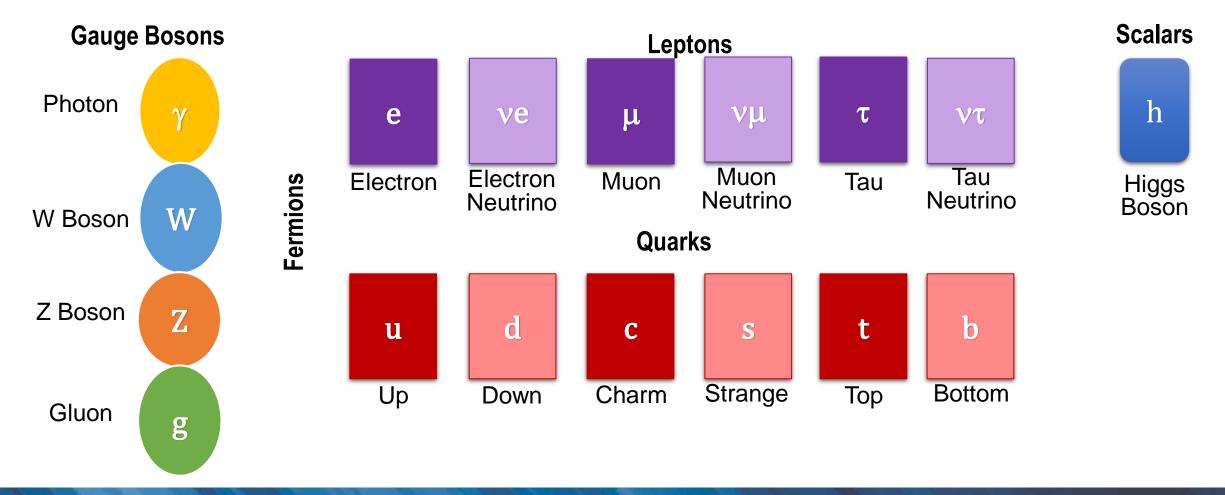


Pair of New Fermions + Scalar

$$|\lambda_L \lambda_R| \gtrsim 0.22$$

Conclusions

The anomalous muon magnetic moment, muon g-2


- Current state of muon g-2
- New muon g-2 value from Fermilab disagrees with SM prediction by 4.2σ.
- Many simple BSM theories cannot produce a contribution that is both positive and large.
- Outlook
- Upcoming muon g-2 experiments are set to further increase the precision, and if the measured value stays the same or increases, then disagreement between the SM and experiment will increase.

Thank you for Listening!

Standard Model of Particle Physics

