Hierarchy in double SU(2) models

Clara Álvarez-Luna, José A. R. Cembranos, Juan J. Sanz-Cillero

Departamento de Física Teórica & IPARCOS Universidad Complutense de Madrid

June 28, 2021

c.a.luna@ucm.es

forthcoming: arXiv:2107.....

Clara Álvarez-Luna

EPS-HEP Conference 2021

June 28, 2021 0 / 10

Contents

Introduction

The model

- Particle content
- Effective potential

3 Phenomenology

- Hierarchies in the model
- Fixed L sector
- Both L and H sectors integrated out

4 Conclusions

- **Motivation**: to introduce new scalar particles, we need to have a mass hierarchy \rightarrow understand the origin of these energy scales
- Is it possible to obtain hierarchy in a *natural* way? (i.e. general model/models & wide range of parameters)
- Scales originated by quantum corrections
- **Proposal**: toy model to study large separation of scales from quantum origin
- Start from a massless lagrangian and make use of the Coleman & Weinberg mechanism to obtain SSB; effective potential formalism (1-loop)

The model

$SU(2)_L \times SU(2)_H \times U(1)_X$

$$\begin{aligned} \mathcal{L}_0 &= |D_\mu \Phi|^2 + |D_\mu \Theta|^2 - V_0(\Phi, \Theta) \\ \mathrm{D}_{L,H}^\mu &= \partial^\mu - \frac{i}{2} g_{L,H} \sigma_a W_{L,H}^{a\mu} - \frac{i}{2} g_X Q_{L,H} X^\mu \end{aligned}$$

Kinetic term \longrightarrow boson mass terms

Scalars: classical fields and potential

$$egin{aligned} \Phi &= rac{1}{\sqrt{2}} \left(egin{aligned} 0 \ arphi \end{array}
ight) \;, \qquad \Theta &= rac{1}{\sqrt{2}} \left(egin{aligned} 0 \ \eta \end{array}
ight) \ \mathcal{W}_0(arphi,\eta) &= rac{1}{4!} \lambda_L arphi^4 + rac{1}{4!} \lambda_H \eta^4 + rac{1}{4!} \lambda_{LH} arphi^2 \eta^2 \end{aligned}$$

From \mathcal{L}_0 we obtain the mass matrix $\mathcal{G}(\varphi,\eta)$ of the model ightarrow diagonalize

Particle content of the model: $W_{L,H}, Z_{L,H}, \hat{\gamma}, \varphi, \eta$

2 scalars (φ , η) and 7 gauge bosons whose masses m_j depend on the scalar backgrounds and gauge couplings:

- L H decoupled limit ($g_X = 0$):
 - $m_{W_{L,j}} = g_L \varphi/2 \ (j = 1, 2, 3)$
 - $m_{W_{H,j}} = g_H \eta/2 \ (j = 1, 2, 3)$

•
$$m_X = 0$$

General case ($g_X \neq 0$), more involved expressions:

- $W^{\mu}_{L,1}$, $W^{\mu}_{L,2}$, $W^{\mu}_{H,1}$ and $W^{\mu}_{H,2}$: the same m as with $g_X=0$
- mixing between $W^{\mu}_{L,3}$, $W^{\mu}_{H,3}$ and $X^{\mu} o Z^{\mu}_L$, Z^{μ}_H and $\hat{\gamma}^{\mu}$
- $\hat{\gamma}^{\mu}$ is always massless
- Z_L^{μ} and Z_H^{μ} masses: combination of the three gauge couplings $g_{L,H,X}$

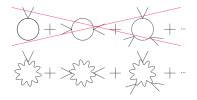
Effective potential

Tree level + 1-loop:

$$V(\varphi,\eta) = V_0(\varphi,\eta) + \frac{3}{64\pi^2} \sum_{j=1}^7 m_j^4 \left[\ln\left(\frac{m_j^2}{\mu^2}\right) - \frac{5}{6} \right]$$

Restrictions:

 $\begin{array}{l} \mbox{Coleman \& Weinberg hypothesis} \rightarrow |\lambda_j| < \epsilon_{CW} \cdot g_j^2 \\ \mbox{Perturbativity} \rightarrow g_j^2 < \epsilon_{g^2} \cdot 4\pi \equiv g_{max}^2 \end{array}$



Coleman, Weinberg, Phys. Rev. D7 1888 (1973)

Casas, Espinosa, Quirós, arXiv:hep-ph/9409458v1

Clara Álvarez-Luna

EPS-HEP Conference 2021

Phenomenology: hierarchy?

We can define the hierarchy between the L and H sectors as:

$$\mathfrak{R} = \frac{m_{W_H}^2}{m_{W_L}^2} = \frac{g_H^2 \langle \eta \rangle^2}{g_L^2 \langle \varphi \rangle^2}$$

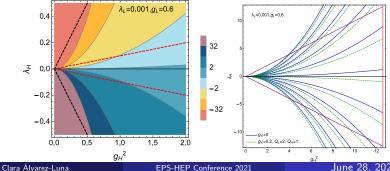
- L: light particles $\longrightarrow m^2_{W_L,Z_L}$
- *H*: particles at a higher mass scale m_{W_H,Z_H}^2
- Large hierarchy $\Re \gg 1 \longrightarrow$ final probability expressions can be simplified
- $m_\eta^2/m_\varphi^2 \sim \Re$

If $g_X = 0$, $\lambda_{LH} = 0 \rightarrow$ simple analytical expressions. If $g_X \neq 0$, $\lambda_{LH} = 0 \rightarrow$ analytical expressions only if $g_X \ll 1$. If $\lambda_{LH} \neq 0 \rightarrow$ involved case without analytical expressions \rightarrow numerical.

Fixed *L* sector

Constant hierarchy \mathfrak{R} lines in the (g_H^2, λ_H) plane $(\lambda_{LH} = 0)$

$$\Re = Exp\left[\frac{128\pi^2}{27}\left(\frac{\lambda_L}{g_L^4} - \frac{\lambda_H}{g_H^4}\right)\right] \qquad (g_X = 0)$$
$$\Re = Exp\left[\frac{128\pi^2}{27}\left(\frac{(\lambda_L + \frac{9}{128\pi^2}g_L^2Q_L^2g_X^2)}{(g_L^4 + \frac{2}{3}g_L^2Q_L^2g_X^2)} - (L \leftrightarrow H)\right)\right]$$

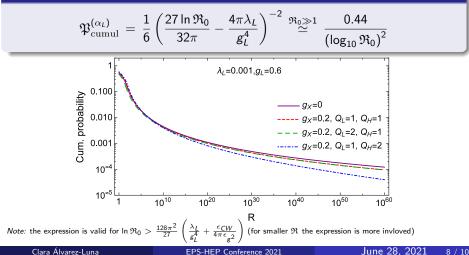


June 28, 2021 7 / 10

Fixed L sector

Probability $\mathfrak{P}_{cumul}^{(\alpha_L)}$: ratio of the area with $\mathfrak{R} \in [\mathfrak{R}_0, \infty]$ and the total allowed area in the (g_H^2, λ_H) plane (*CW-triangle*)

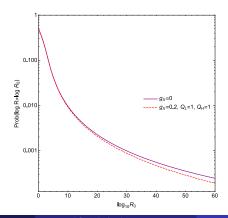
Cumulative probability for \Re from \Re_0 to ∞ for fixed $\alpha_L = (g_L^2, \lambda_L)$



Both L and H sectors integrated out

Cumulative probability for $\mathfrak R$ from $\mathfrak R_0$ to ∞

$$\mathfrak{P}_{\mathrm{cumul}} \stackrel{\mathfrak{R}_0 \gg 1}{\simeq} \frac{1}{3} \left(\frac{32\pi}{27 \ln \mathfrak{R}_0} \right)^2 \simeq \frac{0.87}{(\log_{10} \mathfrak{R}_0)^2}$$



Clara Álvarez-Luna

Conclusions

Summary:

- model with $SU(2)_L imes SU(2)_H imes U(1)_X$ symmetry
- assumptions: CW and perturbativity
- 2 sectors of particles with possible hierarchy between them
- hierarchy: depends on the couplings

 $\rightarrow g_L, g_H, \lambda_L, \lambda_H, g_X(Q_L, Q_H), \lambda_{LH}$

• wide regions of parameter space giving place to very different hierarchies

Results & future work:

- \bullet probability of obtaining very large hierarchies is suppressed, but only logarithmically \to not excluded
- $\Re \gtrsim (M_P/m_{EW})^2 \sim 10^{32}$ only suppressed by $\mathfrak{P} \sim 10^{-3} ext{--} 10^{-4}$
- same results are obtained if more symmetry groups are included as $\mathcal{G} = \prod_{\chi} SU(2)_{\chi}$

Thank you for your attention

Clara Álvarez-Luna

EPS-HEP Conference 2021

June 28, 2021 10 / 10

The masses of the Z_L^{μ} and Z_H^{μ} gauge bosons are given by,

$$\begin{split} m_{Z_{L,H}}^2 &= \frac{\overline{M}^2}{2} \left[1 \mp \sqrt{1 - 4\overline{m}^2/\overline{M}^2} \right] ,\\ \overline{M}^2 &= (g_H^2 + g_X^2 Q_H^2) \eta^2 + (g_L^2 + g_X^2 Q_L^2) \varphi^2 ,\\ \overline{m}^2 &= (g_H^2 g_L^2 + g_X^2 (Q_H^2 g_L^2 + Q_L^2 g_H^2)) \eta^2 \varphi^2 / (4\overline{M}^2) , \end{split}$$

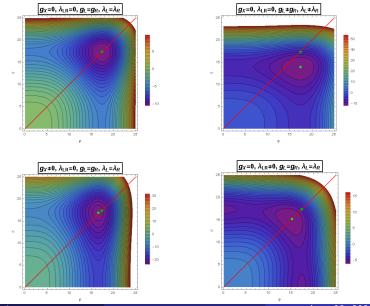
with $m_{Z_L} \approx \overline{m}$ and $m_{Z_H} \approx \overline{M}$ for $\overline{m} \ll \overline{M}$.

Probability for $g_X \neq 0$

$$\mathfrak{P}_{\text{cumul}}^{(\alpha_L)} = \frac{(1+\mathfrak{a})^3}{6(1+\mathfrak{b})} \left(\frac{27\ln\mathfrak{R}_0}{32\pi} - \frac{4\pi\lambda_L}{g_L^4} + \mathfrak{c}\right)^{-2}$$

$$\begin{split} \mathfrak{a} &= \frac{Q_{H}^{2}g_{X}^{2}}{g_{L}^{2}} \bigg[-\frac{9g_{L}^{2}}{128\pi^{2}} \left(1 + 2\ln\mathfrak{R}_{0} \right) + \frac{2}{3} \\ &- \frac{g_{X}^{2}}{64\pi^{2}} \left(19(Q_{L}^{2} - Q_{H}^{2}) + 6Q_{H}^{2}\ln\mathfrak{R}_{0} \right) + \frac{2\lambda_{L}}{3g_{L}^{2}} \bigg] \\ \mathfrak{b} &= \frac{2Q_{H}^{2}g_{X}^{2}}{3g_{L}^{2}} \\ \mathfrak{c} &= \frac{3g_{X}^{2}}{32\pi g_{L}^{2}} \left(19Q_{L}^{2} - 22Q_{H}^{2} + 6Q_{H}^{2}\ln\mathfrak{R}_{0} \right) \end{split}$$

Possible hierarchy cases



Clara Álvarez-Luna

EPS-HEP Conference 2021

June 28, 2021 10 / 10